TransUnet官方代码测试自己的数据集(已训练完毕)
首先参考上一篇的训练过程,这是测试过程,需要用到训练过程的权重。
1. TransUnet训练完毕之后,会生成权重文件(默认保存位置如下),snapshot_path为保存权重的路径。
权重文件
2. 修改test.py文件
调整数据集路径。 训练和测试时的图像设置相同大小。
配置数据集相关信息。 手动添加权重。
3. 设置DataLoader
设置DataLoader中参数num_workers=0。
4. 修改utils.py文件
替换utils.py中的test_single_volume函数,原网络输出的是0,1,2,3,4像素的图片,分别代表5个类别,直接显示均呈黑色。对此,我们通过像素调整,使每个类别呈现不同的颜色。
def test_single_volume(image, label, net, classes, patch_size=[256, 256], te
共有 0 条评论