从0开始建立数据指标体系

最近求职课的很多同学都找到了满意的工作,进入大厂。为了提升同学们的职场竞争力,陈老师特别推出一个系列文章。从数据分析的基础方法到具体问题处理,系统讲解一下。第一期,当然得从数据指标体系讲起。因为几乎所有数据分析工作都会提“建立数据指标体系”。

同学们现实的困惑是:你说报表我就见过,我天天都在更新。可这玩意怎么就体系了呢?做了体系又怎么样呢?为啥我不觉得我做的是体系?今天系统解答一下。要讲,就从数据指标讲起。

一、为啥需要数据指标

以下话是不是经常听到:

“大概有1万多人吧”

“有很多顾客都不满意”

“感觉我们门店都没人了”

不确定、不具体、不准确。

我们平时过日子都是这么说话的。没毛病,因为具体的消息是有很大成本的,大部分时候我们就是随口说说而已。但是企业经营要是都靠这个那就死翘翘了,花多少钱赚多少钱都不清楚,老板非气得翘辫子。

数据指标就是对抗这种不确定的。

如果我们把上边的表述改成:

4月1日新注册用户9800人,超目标1000人

4月1日当日A产品退货100件,累计30天退货率2.5%

4月1日全国到店用户30万人,到店率30%,低于32%的期望值

是不是爽快多了。这就是数据指标的直观用途。

二、为啥需要数据指标体系

实际工作中,想要准确说清楚一件事是挺麻烦的,比如我们想说:“2月份A产品卖得非常棒!”如果对方想较真的话,可以挑一堆刺出来

一个问题,往往有很多方面,只用一个指标不能充分说明问题。这就需要一组有逻辑的数据指标来描述,这就是数据指标体系。

三、数据指标体系五大件

1. 第一要素:主指标(一级指标)

用来评价这个事到底咋样的最核心的指标。比如说:“产品卖得好”。直观地想到是“销售金额”这个指标,因为这是我们卖货直接收到手里的钱,钱多了当然好。

每个指标得有以下要素:

业务含义:在业务上它的意义是……

数据来源:哪个系统采集原始数据

统计时间:在XX时间内产生的该数据

计算公式:如果有比例、比率,得说清楚谁除谁;如果是汇总,得说清楚谁加谁。

注意:有可能需要多个主指标,来做综合评价。比如产品卖得好,光看金额还不够,可能还要关注毛利,这才是真正赚到的钱。可能还得看销售数量,因为销售数量和库存直接挂钩,得防止积压太多。这样就至少有了三个主指标:销售金额、销售件数、销售毛利。

2. 第二要素:子指标(二级/三级指标)

主指标可能由几个子部分构成。比如:

销售金额=用户数 * 付费率* 客单价

如果销售金额没达标,我们会很好奇:到底是购买的客户少了,还是卖的人不够多,还是卖得太便宜了,了解细节有利于我们找到真正的问题,这时候就得拆解子指标。

3. 第三要素:过程指标

主指标往往是最终的结果,比如B2B行业的销售金额,是销售线索-售前跟进-需求确认-产品体验-价格谈判-竞标-签约这一系列过程最后的一个结果。光看一个最后结果是无法监督、改进过程的。如果想更进一步管理,就得看得更细一些,从而添加子指标

4. 第四要素:分类维度

有可能一件事是很多人、在很长时间内完成的。想知道总销售金额是怎么构成的,每个地区、每个团队分别完成多少,可以增加分类维度。

通过分类维度,把主指标切成若干块,这样能避免平均数陷阱,把整体和局部一起看清楚

5. 第五要素:判断标准

即使有了以上四个点,我们还是不能说:A产品卖得好。因为好是个形容词,是和差相对的。因此就需要一个对比的参照物。参照物的选择,本身是个复杂的分析过程,需要做深入的分析。

在构造指标体系的时候,往往这些判断标准是和当前数据一起呈现的。这样在看数据的时候,可以直观地做出判断,使用起来就很方便了。

四、为什么我做的不是指标体系

常见问题一:没有主指标,不知道在干啥。

这是最常见的问题。很多同学的报表是从离职同事那里交接来的。为什么做?做了给谁看?看了又怎样?一问三不知。反正每天照猫花虎,定时更新就好了。

有些同学试图搞清楚,但是业务方自己是糊涂蛋。你问他:你们目标是什么啊?他答:提升GMV啊~~亲,GMV这么宏观的东西,他到底管哪一块?提升的话从多少提升到多少?提升到多少算满意?丫自己做方案也是照猫画虎,稀里糊涂,更不要说和数据分析师讲清楚了。

常见问题二:没有判断标准,不知道说了啥。

这个是另一个常见,且致命的问题。很多同学都是盲目更新报表,数据列了一大堆,到底什么算“好”什么算“不好”,不知道。或者只是天真地认为:涨就是好,跌就是不好。结果引出特别多笑话

常见问题三:没有拆解子指标,对着主指标发呆。

这个问题往往是部门分工问题的后遗症。

常见问题四:没有按业务流程构造子指标,单纯堆砌数据。

很多同学构建数据指标体系,喜欢堆砌数据。放一堆指标以显得丰富。可实际上如果不按业务流程找子指标,指标之间逻辑性就很差,看起来经常莫名其妙。更不要说,很容易弄出来类似“你幸福吗”这种稀奇古怪的玩意。

常见问题五:没有根据业务选分类维度,胡乱拆解。

把用户性别、年龄、地域、VIP等级、来源渠道、终端型号等等维度一通丢,显得报表很丰富,实际上业务意义不清楚。

你问他为什么拿男女分类,他答:分出来差异大……至于差异大了还能咋样,业务上有没有能力针对性别做事情,又不知道了。

以上种种问题,本质上都是没有站在对业务有用的角度进行思考。单纯地为了搞指标而搞指标。

这和工作习惯有直接关系。很多同学不是试图自己去理解业务流程,了解业务目标,而是去找一个“权威”“正式”“完美”“通用”版的指标体系。结果就是只会到处抄抄抄,看似做了很多,结果连看数据的人都没几个。

版权声明:
作者:玉兰
链接:https://www.techfm.club/p/50303.html
来源:TechFM
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>