文献学习101–IL-33诱导的代谢重编程控制选择性激活巨噬细胞的分化与炎症的消退
1. IL-33 induces the delayed differentiation of a pro- resolving AAM phenotype
在anterior tibial muscle胫骨前肌注射cardiotoxin (CTX)可以引起局部肌肉坏死和组织损伤炎症反应。表现为大量的单核细胞及单核衍生的巨噬细胞的浸润。而坏死组织的清除、炎症的消退和肌纤维的重生都非常依赖于subsequent differentiation of pro-resolving AAMs。
Fig 1a-c: 为了探究IL33的作用,作者首先使用了Il1rl1-/-的小鼠,发现敲除鼠在CTX注射后损伤加重,恢复减慢。提示IL-33-IL1RL1 signaling axis在抑制免疫损伤和促进组织修复中发挥作用。
Fig 1d-f: 作者对WT和Il1rl1-/-小鼠的BMDM给予了IL-33干预,并进行了转录组测序。This analysis confirmed that the IL-33- IL1RL1 axis specifically induced the concomitant expression of pro- and anti-inflammatory genes. (Arg1和Retnla主要参与向修复巨噬的转变)
Fig 1g-i: qpcr, western和elisa也得到了一致的结果。
Fig 1j: In accordance with a switch toward a pro-resolving macrophage phenotype, IL-33-activated macrophages also displayed an increased capacity to ingest and clear necrotic cells.
Fig 1k: Other pro-inflammatory alarmins and IL-1 family members such as IL-1b and IL-18 that equally use MyD88-dependent signaling, in turn, showed no impact on AAM markers (K), while IL-4 similarly induced markers of AAM differentiation (G and H) but failed to induce pro-inflammatory cytokines.
而且IL33诱导的促炎基因和抗炎基因的表达具有不同的kenetics (早期释放促炎细胞因子,稍晚则转变为促修复细胞因子)
2. IL-33 and IL-4 induce distinct AAM phenotypes
为了探究损伤时IL33在不依赖于IL4的情况下诱导促修复AAM表型的特征,作者对IL33和IL4诱导的AAMs进行了转录组测序。
Fig 2a-d: IL33和IL4诱导的AAM具有不同的转录特征。
Fig 2e-f: 敲除IL4受体基因阻断了IL4诱导的促修复基因表达,但不影响IL33介导的促修复基因表达。
Fig 2g-i: 然而,deletion of the gene encoding for the signaling adaptor MyD88,阻断了IL33诱导的促修复基因表达,但不影响IL4介导的促修复基因表达。
These results confirm that IL-33 and IL-4 use different receptors and proximal signaling adaptors to imprint an AAM phenotype.
3. IL-33-induced AAM differentiation depends on mitochondrial uncoupling
Fig 3a: 对IL33诱导基因的功能富集提示IL33影响了巨噬细胞的代谢。
由于代谢与巨噬细胞极化关系密切,作者随后dissect these IL-33-induced metabolic changes in macrophages in more detail。
Fig 3b-d: 与IL4和LPS不同,IL33刺激6h后不直接影响巨噬细胞的extracellular acidification rate 和 basal nor the maximal respiratory capacity。
Fig 3c-f: IL-33-treated macrophages rapidly developed a proton leak after IL-33 stimulation, which indicated an IL-33- induced and IL1RL1-dependent uncoupling of the mitochondrial respiratory chain in macrophages.
Fig 3g: Uncoupling was not associated with transcriptional changes in the expression of genes encoding for uncoupling proteins (UCPs) such as UCP1 or UCP2. 然而,作者在IL33处理的巨噬中观察到UCP2蛋白在线粒体的积聚。在Il1rl1-/-细胞中则没有出现这种现象,而且IL33处理的巨噬中UCP2蛋白在线粒体的积聚在使用p38 MAPK信号通路的抑制剂 SB 203580抑制后消失。提示IL-33- induced and p38 MAPK-mediated translocation of preformed UCP2 into the mitochondrial compartment.
线粒体质子漏(Proton Leak)是指在线粒体内质膜上存在的一种通透性蛋白通道,允许质子从线粒体膜间隙返回线粒体内膜内,从而绕过线粒体ATP合酶(ATP synthase)。正常情况下,质子在线粒体内膜上形成质子梯度,通过ATP合酶驱动ADP和磷酸转化为ATP。然而,质子漏会导致质子梯度的损失,减少ATP的产生效率。
质子漏可以通过调节线粒体内膜上的蛋白通道来发生。一个重要的质子漏通道是线粒体内膜上的UCP(uncoupling protein)家族蛋白。UCP通道可以被激活,使质子通过线粒体内膜,而不经过ATP合酶。这样一来,质子梯度的能量将被释放为热量,而不是用于ATP合成。质子漏的发生可以增加线粒体呼吸过程中产生的热量,并影响细胞能量代谢和体温调节。
质子漏可作为线粒体损伤的标志,也可被认为是调节线粒体ATP合成的一种机制。
此前文献报道,Mitochondrial uncoupling可以限制 reverse electron transport 来源的过度ROS产生。而ROS产生则是炎性巨噬细胞的特征。例如在LPS诱导的巨噬细胞中,过量的ROS可以引起线粒体损伤,损害线粒体功能 and/or 阻断TCA) cycle。
Fig 3h: 随后作者使用药物compound genipin (GNP, 抑制细胞中的 UCP2)阻断了mitochondrial uncoupling,we observed that GNP treatment of IL- 33-stimulated macrophages resulted in increasingly impaired mitochondrial function and a decrease in the oxygen consumption rate after prolonged stimulation for 24 h。
In summary, these data thus indicated that IL-33-activated macrophages displayed a metabolic rewiring that was distinct from IL-4- or LPS-treated macrophages and characterized by UCP2- mediated uncoupling of the respiratory chain, which blocked the generation of ROS and allowed sustained mitochondrial respiration as well as an intact TCA cycle in otherwise pro-inflammatory macrophages.
Fig 3i-l: 为了进一步验证前面的结果,作者使用IL33和IL4对GNP处理的巨噬和Ucp2-/-巨噬进行了诱导。发现解偶联后IL33对修复性巨噬细胞的诱导能力消失,而IL4对修复性巨噬细胞的诱导能力则没有受到影响。
Fig 3j: Forced uncoupling induced by 2,4-dinitrophenol (DNP) further increased IL-33-mediated ARG1 expression but did not promote AAM differentiation in the absence of IL-33.
Fig 3m: IL-33诱导的促炎性细胞因子如TNF等的表达则不依赖于UCP2。
4. IL-33-mediated mitochondrial uncoupling results in a shift of metabolites and a subsequent expression of the transcription factor GATA3
前面的数据显示UCP2介导的线粒体呼吸链解耦连对线粒体功能、巨噬细胞plasticity、和IL33诱导下巨噬细胞的AAM分化十分重要,作者想要去探究其背后的机制。
Fig 4a-b: 作者对IL-33刺激的WT, GNP-treated, 和 Ucp2-/-�巨噬进行了MS质谱检测。In accordance with a central metabolic role of mitochondrial uncoupling during mitochondrial fitness and function, this approach confirmed significant IL-33- induced and UCP2-dependent shifts in intracellular metabolites. 这些UCP2-依赖的改变包括IL33诱导的衣康酸和其它TCA代谢物如琥珀酸和延胡索酸的增加,都在阻断或UCP2-/-后下降。(ITAC就是衣康酸)
Fig 4c-d: Irg1-/-影响IL-33诱导的AAM分化,不影响IL-4诱导的AMM分化。
Fig 4e: 为了探究IL33驱动AAM分化的转录因子,作者使用TRANSFAC进行了转录因子预测。结果显示除了与IL4诱导AAM分化一致,存在着NF-kB, AP-1, IRF, and NFAT家族转录因子的活化,GATA家族的转录因子同样是IL33诱导的巨噬细胞转录变化的mediators。
Fig 4f-g: IL33而不是IL4诱导下Gata3的表达上调。
Fig 4h: 而且IL-33诱导的 GATA3表达是依赖于UCP2-mediated mitochondrial uncoupling 和 ACOD1介导的衣康酸产生。因为GNP 和 Ucp2 或 Irg1 的敲除抑制了 IL-33 介导的巨噬细胞GATA3的表达。
These data accordingly suggest a central role of GATA3 as metabolic signaling hub in macrophages that responds to an IL-33-induced mitochondrial reprogramming and translates it into global changes in gene expression.
5. GATA3 controls the differentiation of AAMs in response to IL-33
Fig 5a: 随后作者使用Cx3cr1 cre构建了巨噬特异性Gata3敲除鼠(Gata3Δmac mice)。免疫荧光结果显示在WT小鼠BMDM中,IL33诱导了GATA3在细胞核的聚集。而这个现象在L-33刺激下Gata3Δmac mice的BMDMs中消失。
Fig 5b-d: RNAseq的结果显示GATA3缺陷确实abrogated IL-33-mediated induction of a subset of IL-33-responsive genes in macrophages.
Fig 5e-f: WB和QPCR做了验证
Fig 5g: Notably, IL-33 failed to increase the capacity of GATA3-deficient macrophages to ingest and clear necrotic cells demonstrating that this transcription factor coordinated various pro-resolving properties of macrophages in response to IL-33.
Fig 5h: The defective IL-33-induced AAM differentiation in GATA3-deficient BMDMs, however, did not alter expression of IL-33-induced Irg1 mRNA and of pro-inflammatory cytokines such as TNF, IL- 6, or IL-1b. Production of IL-1b was even increased.
6. Tissue damage results in the differentiation of pro- inflammatory and pro-resolving mononuclear phagocytes
Fig 6a-c: 随后作者对Gata3Δmac 鼠和同窝对照进行了肌炎造膜,分选了肌肉中的CD45+CD11B+LY6G-单核巨噬细胞,进行了单细胞测序。结果得到6个细胞群,包括2群Ccr2+单核和2群Cd68+巨噬。5群是DC,6群是增殖巨噬。
Fig 6d-e: 轨迹分析结果提示新招募的 Ccr2hi单核最先分化为炎性 Il1b+单核,随后分化为Trem2hi和Mylpf+巨噬。 从单核分化为促修复的巨噬过程与Ccr2的下调和Cd68和Trem2的上调平行。促炎因子如Il1b, Ccl4, 和 Cxcl2 的表达在intermediary stage,也就是pro-inflammatory Il1b+ monocytes达到峰值,而在分化为Trem2hi 和 Mylpf+巨噬时下降。mRNAs such as Mylpf and Des encoding for muscle cell markers accordingly appeared primarily in differentiated pro-resolving macrophages.
7. GATA3 controls the differentiation of pro-resolving macrophages
Fig 7a-b: GATA3的缺陷并没有改变总的单核巨噬细胞数目,但是影响了亚群的比例。CTX诱导的肌肉损伤下,Gata3Δmac 鼠的l1b+ monocytes增加,促修复的Mylpf+ macrophages则出现缺失。与前面轨迹分析的结果一致,GATA3的缺陷影响l1b+ monocytes向Mylpf+ macrophages的分化,因此损伤了对坏死肌肉的吞噬作用。
Fig 7c-d: 促炎巨噬不能向促修复巨噬分化的现象与Gata3Δmac 鼠巨噬的促炎细胞因子Il1b等增加相一致。
Fig 7e: comparative pseudotime analysis也证实Gata3Δmac鼠肌肉中的单核吞噬细胞在分化为巨噬的过程中存在exacerbated and prolonged inflammatory response。Accumulation of skeletal muscle mRNAs (e.g., Mylpf) in differentiated macrophages as readout for their pro-resolving and phagocytic activity, in turn, was reduced in Gata3Dmac mice, confirming the decreased efferocytosis observed in the absence of GATA3 in vitro。
Fig 7f-h: GATA3缺陷的小鼠表型更重,修复更慢。
These data thus demonstrated the functional relevance of GATA3 as transcriptional hub in macrophages that controlled their pro-resolving and reparative properties in response to tissue damage.
共有 0 条评论