Angew:Li-O2电池超氧化物歧化反应的新途径!

非质子锂-氧气(Li-O2)电池由于具有较高的理论能量密度而引起了广泛关注,但由于超氧化物(O2-)中间体在放电和充电过程中歧化导致反应动力学缓慢和电压滞后大基于此,南开大学李福军特聘研究员等人报道了利用化学性质稳定的钌三(联吡啶)(RB)阳离子作为可溶催化剂,改变O2-歧化的途径及其放电和充电过程的动力学。当配以RuO2催化剂时,Li-O2电池的充放电电压差降低了0.72 V,使用寿命延长了230次以上。

VASP解读

通过DFT计算,作者研究了O2-与RB的加速歧化反应。在RB介导的歧化过程中,O2-首先被RB和Li+吸附形成RB1,再溶剂化LiO2,然后它们反应形成二聚体RB2,而生成的RB2快速捕获电解质中的Li+。最后,RB3以0.70 kcal/mol的小能垒分解生成O2和RB4,由于它们之间的弱相互作用,迅速解离成RB和Li2O2。在无RB的歧化过程中,两个溶剂化的LiO2形成二聚体(LiO2)2溶剂化物,以生成O2和Li2O2。

RB阳离子首先吸附第一个O2-(记为O1)形成RB1,大量电荷从O1转移到RB的二吡基上。然后,RB1捕获第二个超氧化物LiO2(记为O2)形成二聚体RB2,其中O1向RB和Li+同时提供电荷,O2向Li+提供少量电荷。RB3中O1和O2的巨大电荷差降低了能垒,加速了O2-歧化动力学。在没有RB的歧化过程中,溶剂化(LiO2)2的对称构型导致两个超氧化物的电荷相似,因此分子内电荷转移的能垒较高,表明RB介导的O2-歧化在热力学和动力学上都有利。

New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O2 Batteries. Angew. Chem. Int. Ed., 2023, DOI: t-tps://doi.org/10.1002/anie.202315314.

版权声明:
作者:感冒的梵高
链接:https://www.techfm.club/p/92190.html
来源:TechFM
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>