检索增强大模型:NeurIPS2023&ICRL2024

  1. Self-RAG: Self-reflective Retrieval Augmented GenerationNeurIPS2023
  2. Retrieval-Augmented Multiple Instance LearningNeurIPS2023
  3. Fine-grained Late-interaction Multi-modal Retrieval for Retrieval Augmented Visual Question AnsweringNeurIPS2023
  4. Accelerating Retrieval-augmented Language Model Serving with SpeculationICLR2024
  5. RA-DIT: Retrieval-Augmented Dual Instruction TuningICLR2024
  6. Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection ICLR2024
  7. In-Context Learning with Retrieval Augmented Encoder-Decoder Language ModelsICLR2024
  8. BTR: Binary Token Representations for Efficient Retrieval Augmented Language ModelsICLR2024
  9. Hybrid Retrieval-Augmented Generation for Real-time Composition AssistanceICLR2024
  10. Retrieval-augmented Text-to-3D GenerationICLR2024
  11. InstructRetro: Instruction Tuning post Retrieval-Augmented PretrainingICLR2024
  12. PaperQA: Retrieval-Augmented Generative Agent for Scientific ResearchICLR2024
  13. Making Retrieval-Augmented Language Models Robust to Irrelevant ContextICLR2024
  14. RECOMP: Improving Retrieval-Augmented LMs with Context Compression and Selective AugmentationICLR2024
  15. RAPTOR: Recursive Abstractive Processing for Tree-Organized RetrievalICLR2024
  16. Retrieval-augmented Vision-Language Representation for Fine-grained RecognitionICLR2024
  17. KITAB: Evaluating LLMs on Constraint Satisfaction for Information RetrievalICLR2024
  18. Understanding Retrieval Augmentation for Long-Form Question AnsweringICLR2024
  19. Personalized Language Generation via Bayesian Metric Augmented RetrievalICLR2024
  20. Retrieval is Accurate GenerationICLR2024
  21. Adapting Retrieval Models to Task-Specific Goals using Reinforcement LearningICLR2024
  22. Adaptive Chameleon or Stubborn Sloth: Revealing the Behavior of Large Language Models in Knowledge ConflictsICLR2024
  23. Don't forget private retrieval: distributed private similarity search for large language modelsICLR2024
  24. TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023ICLR2024

版权声明:
作者:Zad
链接:https://www.techfm.club/p/93112.html
来源:TechFM
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>