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Let F be a field. Consider the ring structure on F™ where addition is

the usual vector addition and multiplication is defined by

(i s8] * (W5 cwos ) S 0BT iaron s Bl )

Let A ¢ F" be a subring containing (1,...,1). Suppose A is an integral domain,
and its underlying additive group is finitely generated. Prove that for every nonzero
element (z1,...,z,) in A, one has [Ti; z; # 0.
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Let a group G act on a set {2 such that all G-orbits are infinite. Let

I', A be finite subsets of 2. Prove that there exists g € G with gI'n A = @.
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qg:E®rV - E; qe(a®v)=d%q(v), acEveV.
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Let V be a finite-dimensional vector space over a field F' with char(F’) #

2, and let ¢ : V — F be a quadratic form, which means: there is a symmetric F-bilinear
form B:V xV - F (necessarily unique) such that g(v) = B(v,v) for all v. For any
field extension F' — E, we define the base-change quadratic form of ¢ to E by

gz E®rV - E; qp(a®v)=ad’q(v), aeEveV.
We say q is anisotropic if v+ 0 < q(v) #0.
(a) Show that if ¢ is anisotropic and [E : F'] is an odd positive integer, then gg is
also anisotropic.
(b) Does the above statement still hold if [E : F] is even?
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Find all finite groups G satisfying the following conditions:

e the order of G is the product of distinct primes, i.e. #G = p;---p,, for some
distinct primes py,...,pm; and
e all non-trivial elements of G have prime order, that is, the order of every element
belongs to {1,p1,...,Pm}-
(Note: The answer depends on m; for example, when m = 2, there are many such G;
you need to classify them.)
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Find all pairs (k,a), where k > 2 is an integer and a # 0 is a complex

number, such that

a:os{’re%r |reR}, a+ale{m+nv-2|m,neZ}.
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Assume that g(z) is a Schwartz function on R? satisfying that
f 9(z +y)do(y) =0, VzeR’
lyl=1

Here do(y) is the surface measure on the sphere {|y| = 1}. Prove that g = 0.
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MFu € C%(R3) N HY(R?), iFAFEFHCMHE

x| =y

lu(z)| < Ce~2lel.

Let u € C?(R%) N H'(R®) be a spherically symmetric function (that is u(z) = u(y)
whenever |z| = |y|) verifying the equation

Au—u+|u>u=0, VzeR>
Prove that there exists positive constant C' such that

lu(z)| < Ce3l2l,
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Let Q be a bounded domain in RV and x be a non-negative function such that

M < f Kdx, /nada:SEo
Q Q

for some constants o« > 1, M > 0, Ey > 0. Prove that there exists a constant C
depending only on M, Fy, a such that

ol < c(uwnm(m ; fﬂ n|v|dm), vo € H(Q).
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Consider the linear Schrodinger equation
i0u+ Au=0, u(0,z)=wu(z), zeR".

Assume that uy € L2(R™). Prove that

lim —/ / u(t, x) 2ds::dt—O
T—oco T |m\<\f
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Let T? = R?/Z? be the standard 2-dimensional torus and S be a fixed circle of radius
0.1 on T? with the arc length measure ds. Prove that there exists a constant C' > 0
such that for any f on T? satisfying

a;%lf - a:%zf = Afv A % 07

we have

||f||L2(S,ds) < C”f”LQ('ﬂ‘Z)-
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Let S, be a closed orientable surface of genus g, and let Ny, be a closed
non-orientable surface of genus 2¢ (i.e. Ny, is obtained by attaching
2g cross-caps to a sphere). Let f : Npg — S, be a continuous map.
Prove that the induced map f. : Ho(Nog; Z/2Z) — Ho(Sy;Z/27Z) is

Zero.
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Let S3 be the 3-dimensional unit sphere in R*, equipped with the
standard Lie group structure, and let = be a non-zero element of the
de Rham cohomology H3(S3,R). Prove that there does not exist a
Lie group isomorphism f : §3 — S such that f*(z) = —z.
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Let CP? be the complex projective plane, and L, Ly, L3 be three
complex projective lines such that Ly N Ly N Ly = (). The union
of some compact tubular neighborhoods of Li, Lo, L3 is a compact
(real) 4—dimensional manifold W with boundary M = W, such that
W\ (L1 U Ly U L3) is homeomorphic to M x [0,1). Compute the
homology of M with coefficients in Z.
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Let (M,g) be a n-dimensional Riemannian manifold (n > 3) with
sectional curvature K > 0. Let 7(¢) be a geodesic, t € [0,7T), where
t is the arc-length parameter. Assume Jq,...,J,_ 1 are Jacobi vector
fields along +, all orthogonal to ~4/(¢) and linearly independent at any
point of v. Assume further that

(Ji(0), J;(0)) = (Ji(0), J;(0))

for any i, 7, where J! means covariant derivative of J; with respect to

v'. Prove that for every i = 1,...,n—landany 0 < s < t < T, we
have [Ji(s)lg ~ [Ji()lg
s — t '
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Let M be the 5-dimensional smooth compact manifold SO(3) x T2,

where T? is a 2-dimensional torus.

(1) Is there any smooth Riemannian metric g on M with strictly
positive Ricci curvature?
(2) Is there any smooth Riemannian metric g on M with Ric = 0?7

Write down concrete examples if they exist and give your proof if they
do not exist.

M. MASiITEEE Applied&Computational Mathematics
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L a, b (b#0) .
A simple graph G is called beautiful if any two adjacent vertices have different

degrees. For any n > 2, define f(n) as the maximum number of edges in a beautiful graph
with n vertices. Find the real numbers a,b (b # 0) satisfying that

lim 7(3) — f(n)

n—o0 na

= b.
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Let a and b be two strictly positive integers. Given an obscure bag containing a red balls and
b blue balls which only differ in color, Alice plays the following game. In each round she
picks randomly a ball in the bag. If the ball is blue, then the game terminates; otherwise
she puts the ball back and adds another red ball in the bag (hence the number of red
balls in the bag increases by 1). We denote by E,; the expectation of the number of total
rounds of the game.

(1) For which values of a and b the expectation E, is finite?
(2) Determine the value of E,; as a function of a and b.

(3) Assume that Alice knows the total number N of balls but does not know the values of a
and b. She estimates a priori that the value of a uniformly distributes in {1,..., N —1}.
At the end of which round (that she picks a red ball) she could guess with a certainty
of 90% that E,; would be infinite?

BENANELEH ar,-- a0, BEREMNFHELEC+--+a2=1Ma;+ - +a, =a. iEH
FHE—FMER e, -6, BT, FHEBIMRM WA L1 -1, FA

1
lera; + -+ + €pa,] < o

EBﬁHiL—'In=5E.a1=---=a5=1/\/51ﬁa=\/5, Al e =ec=a=1¢=¢=-1,
Y E S |61a1+---+65a5|=1/\/3=1/a.



Given n positive real numbers ay, - - , a, such that they form a unit vector,
ie. a?+---+a2 =1 Let a=a;+---+ a, Show that there exist coefficients e, € {—1, 1}

fori=1,---,n, such that
1
|61a1 b o E'n,al'n| S E

For example, if n = 5and a; = --- = a5 = 1/v/5, then a = /5, and €, = € = €3 = 1,
€4 = €5 = —1 gives €1a; + - - - + €sa5 = 1/+/5.

1E5rFah %, A% A overdamped Langevin equation
) + /28719

KK+ Boltzmann 4347 ps(x) = Z;'e PV, IXH ¢ € R*, § = 15 > 0, kp 72 Boltzmann
WL, T RBE, f(x) = -VV(x) EH:‘I%EI%I V(x) ﬁﬁﬁ@f’ﬁﬁﬁﬁ n xE—A 3n 4EMI FRTSE,
M Zg = [pan € FV @ da RIT—AHEL BTN HIH A KR FEUE,

&1 = f (z1) + V287 (E)m (1)
By = f (22) + V28, ()ma,

Horh By (t) R Bo(t) B HEE B> 0 F0 B > 0. Flim, FIE B < B (HP g1 > 1) {44
B XL IR R TR RGO DR R SRAE RO, B RR v, B1(2) A By(t) R EARE
1, MR EHRZEM (81, 82) = (B, 5) B (1, 82) = (B, B), MAXFEHETHEZ MR A

. [ pz(x1) ps (x2) )
min (pﬁ @) ps (@) )
A4S —F ER R EZR LR B (EFIEH) M5 v — oo B ()RR T TE,
BT Z ARG (A) . EHA— =z, Ml x, R WEENE T FE, BRI ZARSE (B) ,
RS (B) | HAHHRMNMATL HES (A) MRS (B) MK PR EA,



In molecular dynamics, the overdamped Langevin equation

= f(z)+v28'n

is used to sample the Boltzmann distribution ps(x) = Z5'e™#V®, where € R*", 8 =
kBLT > 0, kp is the Boltzmann constant, T denotes the temperature, f(x) = —VV(x) is
the force associated with the potential V' (x), 1 is a 3n-dimensional white noise and Z =
f]msn e #V®)dg. In a variant model, we consider two coupled sampling trajectories

&1 = f (z1) + /26 (Om (1)
&y = f (x2) + /28, (O)m,,

where 3, (t) and B,(t) alternatively swap between two values 8 > 0 and 3 > 0. For example,
we may take 3 < B (so that B~* > B7!), and thus the sampling efficiency is improved
because 3 corresponds to a higher temperature. These swaps are attempted with frequency
v, and the ones from (31, 82) = (B, B), (61, B2) = (B, B) are accepted with probability

u (PB (1) ps (z2) 1) 7

ps (x1) pg (x2)’

and similarly for the ones from (81, 5:) = (B, 8) to (B1,B2) = (B,53). Write out (without
proof) the limit equations of (1) when ¥ — oo, which we name System (A). Find another
dynamics for #; and x,, called System (B), such that System (B) contains only constant-
coefficient noise terms, and System (A) and System (B) share the same invariant measure.

B z,...,0, R—HHERLE, v,..., 00 R —HHERLH, FARHTFTEN =
L...,n #8F y; > x5 —PMRABEW T RN {z1,..., 2.} Bl {11,...,yn} BI——HLE,
HAFBENTENi=1,... ,n 88 T(z) > ;. B0, FENi=1,...,nET(z;) =y B
EXT —MNRFER) T #sisAss XH

n
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#Hre X, :2<0, Tiz) <1}
n
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Let x4, . . ., , be n distinct real numbers and y, . . . , y, are also distinct such that y; > x,for ¢
=1, ..., n. A directional transport T'is a bijection from {z1, . . ., .} to {y1, . . . , yn} such
that T'(z;) > z;fori =1, . .., n. (For instance, letting 7' (z;) = y;for i = 1, . . . , n defines a
directional transport.) The transportation cost of T'is

n

> (T(:) — ).
i=1
(1) Find or describe two directional transports which, respectively, minimize and maximize
the transportation cost, and prove their optimality.

(2) Suppose that (z,)n=1,2,. is an iid sequence from the standard normal distribution and
yi=z;+1,9=1,2,.... Let T* be the directional transport with maximum transporta-
tion cost from X, := {z1,...,2,} to Y, := {y1,...,yn}. Find the limit (in the almost
sure sense) of the random quantity

#{reX,:z<0, Ty(z) <1}
n

as n — 00, where # is the cardinality of a set.



