阿里巴巴全球竞赛决赛试题

一、代数与数论 Algebra&Number Theory

1.

设 F 为域。考虑 F^n 上的如下环结构,加法是通常的向量加法,乘法定义为

$$(x_1,\ldots,x_n)\cdot(y_1,\ldots,y_n)=(x_1y_1,\ldots,x_ny_n).$$

设 $\Lambda \subset F^n$ 为包含 $(1,\ldots,1)$ 的子环。假设 Λ 为整环,而且它作为加法群是有限生成的。试证对于 Λ 的任何非零元 (x_1,\ldots,x_n) ,我们有 $\prod_{i=1}^n x_i \neq 0$ 。

Let F be a field. Consider the ring structure on F^n where addition is the usual vector addition and multiplication is defined by

$$(x_1,\ldots,x_n)\cdot(y_1,\ldots,y_n)=(x_1y_1,\ldots,x_ny_n).$$

Let $\Lambda \subset F^n$ be a subring containing $(1, \ldots, 1)$. Suppose Λ is an integral domain, and its underlying additive group is finitely generated. Prove that for every nonzero element (x_1, \ldots, x_n) in Λ , one has $\prod_{i=1}^n x_i \neq 0$.

2.

设群 G 作用在集合 Ω 上,使得所有 G-轨道都是无限集。设 Γ, Δ 为 Ω 的有限子集。试证存在 $g \in G$ 使得 $g\Gamma \cap \Delta = \emptyset$ 。

Let a group G act on a set Ω such that all G-orbits are infinite. Let Γ, Δ be finite subsets of Ω . Prove that there exists $g \in G$ with $g\Gamma \cap \Delta = \emptyset$.

设 V 为域 F 上的有限维向量空间, $char(F) \neq 2$, 令 $q: V \to F$ 为二次型, 也

就是说:存在对称 F-双线性型 $B:V^2 \to F$ (必然唯一)使得 q(v) = B(v,v) 对所有 v 成立。对所有域扩张 $F \to E$,定义二次型 q 到 E 上的基变换为

$$q_E: E \otimes_F V \to E; \quad q_E(a \otimes v) = a^2 q(v), \quad a \in E, v \in V.$$

我们说 q 是迷向的,如果 $v \neq 0 \iff q(v) \neq 0$ 。

- (a) 试证如果 q 迷向,而 [E:F] 是奇数,那么 q_E 也是迷向的。
- (b) 以上叙述在 [E:F] 为偶数时是否成立?

Let V be a finite-dimensional vector space over a field F with char(F) \neq

2, and let $q: V \to F$ be a quadratic form, which means: there is a symmetric F-bilinear form $B: V \times V \to F$ (necessarily unique) such that q(v) = B(v, v) for all v. For any field extension $F \hookrightarrow E$, we define the base-change quadratic form of q to E by

$$q_E: E \otimes_F V \to E; \quad q_E(a \otimes v) = a^2 q(v), \quad a \in E, v \in V.$$

We say q is anisotropic if $v \neq 0 \iff q(v) \neq 0$.

- (a) Show that if q is anisotropic and [E:F] is an odd positive integer, then q_E is also anisotropic.
- (b) Does the above statement still hold if [E:F] is even?

4.

找出所有满足以下条件的有限群 G:

- G 的阶是相异素数的积,换句话说,存在相异素数 p_1, \ldots, p_m 使得 $\#G = p_1 \cdots p_m$;
- G 的所有非平凡元都是素数阶的,换句话说每个元素的阶数都属于 $\{1, p_1, \ldots, p_m\}$ 。 (注记:答案和 m 有关;例如当 m=2 时存在许多这样的 G;您必须对它们分类。)

Find all finite groups G satisfying the following conditions:

- the order of G is the product of distinct primes, i.e. $\#G = p_1 \cdots p_m$ for some distinct primes p_1, \ldots, p_m ; and
- all non-trivial elements of G have prime order, that is, the order of every element belongs to $\{1, p_1, \ldots, p_m\}$.

(Note: The answer depends on m; for example, when m = 2, there are many such G; you need to classify them.)

5.

找出所有 (k,α) ,其中 k > 2 是整数而 $\alpha \neq 0$ 是复数,使得 $\alpha \in \left\{ re^{\frac{i\pi}{k}} \mid r \in \mathbb{R} \right\}, \quad \alpha + \alpha^{-1} \in \left\{ m + n\sqrt{-2} \mid m, n \in \mathbb{Z} \right\}.$

Find all pairs (k, α) , where k > 2 is an integer and $\alpha \neq 0$ is a complex number, such that

$$\alpha \in \left\{re^{\frac{i\pi}{k}} \mid r \in \mathbb{R}\right\}, \quad \alpha + \alpha^{-1} \in \left\{m + n\sqrt{-2} \mid m, n \in \mathbb{Z}\right\}.$$

二、分析与方程 Analysis&Differential Equations

1.

假设g(x)是定义在 \mathbb{R}^3 上的光滑Schwarz函数(也称速降函数),满足条件

$$\int_{|y|=1} g(x+y)d\sigma(y) = 0, \quad \forall x \in \mathbb{R}^3.$$

这里 $d\sigma(y)$ 是球面 $\{|y|=1\}$ 上的标准面积单元。证明g=0.

Assume that g(x) is a Schwartz function on \mathbb{R}^3 satisfying that

$$\int_{|y|=1} g(x+y)d\sigma(y) = 0, \quad \forall x \in \mathbb{R}^3.$$

Here $d\sigma(y)$ is the surface measure on the sphere $\{|y|=1\}$. Prove that g=0.

假设 \mathbb{R}^3 上的球对称函数u(x)(也就是当|x|=|y|时有u(x)=u(y))满足方程

$$\Delta u - u + |u|^2 u = 0, \quad \forall x \in \mathbb{R}^3.$$

如果 $u \in C^2(\mathbb{R}^3) \cap H^1(\mathbb{R}^3)$, 证明存在常数C使得

$$|u(x)| \le Ce^{-\frac{1}{2}|x|}.$$

Let $u \in C^2(\mathbb{R}^3) \cap H^1(\mathbb{R}^3)$ be a spherically symmetric function (that is u(x) = u(y) whenever |x| = |y|) verifying the equation

$$\Delta u - u + |u|^2 u = 0, \quad \forall x \in \mathbb{R}^3.$$

Prove that there exists positive constant C such that

$$|u(x)| \le Ce^{-\frac{1}{2}|x|}.$$

3.

考虑 \mathbb{R}^n 中的有界区域 Ω ,以及定义在这个区域上的非负函数 κ 使得对常数 $\alpha>1$,M>0, $E_0>0$ 有

$$M \le \int_{\Omega} \kappa dx, \quad \int_{\Omega} \kappa^{\alpha} dx \le E_0.$$

证明存在只依赖于 M, E_0, α 的常数C使得

$$||v||_{L^2(\Omega)} \le C \bigg(||\nabla v||_{L^2(\Omega)} + \int_{\Omega} \kappa |v| dx \bigg), \quad \forall v \in H^1(\Omega).$$

Let Ω be a bounded domain in \mathbb{R}^N and κ be a non-negative function such that

$$M \le \int_{\Omega} \kappa dx, \quad \int_{\Omega} \kappa^{\alpha} dx \le E_0$$

for some constants $\alpha > 1$, M > 0, $E_0 > 0$. Prove that there exists a constant C depending only on M, E_0, α such that

$$||v||_{L^2(\Omega)} \le C \bigg(||\nabla v||_{L^2(\Omega)} + \int_{\Omega} \kappa |v| dx \bigg), \quad \forall v \in H^1(\Omega).$$

在欧1上考虑薛定谔方程

$$i\partial_t u + \Delta u = 0$$
, $u(0, x) = u_0(x)$, $x \in \mathbb{R}^n$.

假设初始值 $u_0 \in L^2(\mathbb{R}^n)$ 。证明

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \int_{|x| < \sqrt{t}} |u(t, x)|^2 dx dt = 0.$$

Consider the linear Schrödinger equation

$$i\partial_t u + \Delta u = 0$$
, $u(0, x) = u_0(x)$, $x \in \mathbb{R}^n$.

Assume that $u_0 \in L^2(\mathbb{R}^n)$. Prove that

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\int_{|x|\leq \sqrt{t}}|u(t,x)|^2dxdt=0.$$

5.

考虑标准的2维环面 $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$,以及上面的半径为0.1的圆圈S。证明存在常数C>0使得对任意定义在环面上,并且满足方程

$$\partial_{x_1}^2 f - \partial_{x_2}^2 f = \lambda f, \quad \lambda \neq 0$$

的函数f均满足不等式

$$||f||_{L^2(S,\mathrm{d}s)} \le C||f||_{L^2(\mathbb{T}^2)}.$$

其中ds为圆圈的弧长测度.

Let $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ be the standard 2-dimensional torus and S be a fixed circle of radius 0.1 on \mathbb{T}^2 with the arc length measure ds. Prove that there exists a constant C > 0 such that for any f on \mathbb{T}^2 satisfying

$$\partial_{x_1}^2 f - \partial_{x_2}^2 f = \lambda f, \quad \lambda \neq 0,$$

we have

$$||f||_{L^2(S,\mathrm{d}s)} \le C||f||_{L^2(\mathbb{T}^2)}.$$

三、几何与拓扑 Geometry&Topology

1.

设 S_g 是亏格为 g 的可定向闭曲面, N_{2g} 是亏格为 2g 的不可定向闭曲面 (即 N_{2g} 由球面粘接 2g 个 "交叉帽"得到). 设 $f:N_{2g}\to S_g$ 是连续映射. 证明: 诱导映射 $f_*:H_2(N_{2g};\mathbb{Z}/2\mathbb{Z})\to H_2(S_g;\mathbb{Z}/2\mathbb{Z})$ 恒为 0.

Let S_g be a closed orientable surface of genus g, and let N_{2g} be a closed non-orientable surface of genus 2g (i.e. N_{2g} is obtained by attaching 2g cross-caps to a sphere). Let $f: N_{2g} \to S_g$ be a continuous map. Prove that the induced map $f_*: H_2(N_{2g}; \mathbb{Z}/2\mathbb{Z}) \to H_2(S_g; \mathbb{Z}/2\mathbb{Z})$ is zero.

2.

设 S^3 是 \mathbb{R}^4 中的单位球面,赋予标准的李群结构,x 为 de Rham 上 同调 $H^3(S^3,\mathbb{R})$ 的一个非零元. 证明:不存在李群同构 $f:S^3\to S^3$ 使得 $f^*(x)=-x$.

Let S^3 be the 3-dimensional unit sphere in \mathbb{R}^4 , equipped with the standard Lie group structure, and let x be a non-zero element of the de Rham cohomology $H^3(S^3, \mathbb{R})$. Prove that there does not exist a Lie group isomorphism $f: S^3 \to S^3$ such that $f^*(x) = -x$.

设 $\mathbb{C}P^2$ 为复射影平面, L_1, L_2, L_3 为其中三条复射影直线, 满足 $L_1 \cap L_2 \cap L_3 = \emptyset$. 取 L_1, L_2, L_3 各自的紧致管状邻域, 使得它们的并是一个 (实)4 维带边紧致流形 W, 边界记为 $M = \partial W$, 并且要求 $W \setminus (L_1 \cup L_2 \cup L_3)$ 同胚于 $M \times [0,1)$. 请计算 M 的 \mathbb{Z} 系数同调群.

Let $\mathbb{C}P^2$ be the complex projective plane, and L_1, L_2, L_3 be three complex projective lines such that $L_1 \cap L_2 \cap L_3 = \emptyset$. The union of some compact tubular neighborhoods of L_1, L_2, L_3 is a compact (real) 4-dimensional manifold W with boundary $M = \partial W$, such that $W \setminus (L_1 \cup L_2 \cup L_3)$ is homeomorphic to $M \times [0,1)$. Compute the homology of M with coefficients in \mathbb{Z} .

4.

设 (M,g) 是 n 维黎曼流形 $(n \ge 3)$,截面曲率 $K \ge 0$. 设 $\gamma(t)$ 为测地线, $t \in [0,T)$,其中 t 是弧长参数. 假设 $J_1, ..., J_{n-1}$ 是沿 γ 的 Jacobi 场,都垂直于 γ' ,且在 γ 每一点都线性无关。假设对任何 i,j 都满足

$$(J_i'(0), J_j(0)) = (J_i(0), J_j'(0)),$$

其中 J_i' 表示 J_i 沿 γ' 方向的协变导数。证明:对每个 $i=1,\ldots,n-1,$ 和 0 < s < t < T, 都有 $\frac{|J_i(s)|_g}{s} \geq \frac{|J_i(t)|_g}{t}.$

Let (M,g) be a n-dimensional Riemannian manifold $(n \geq 3)$ with sectional curvature $K \geq 0$. Let $\gamma(t)$ be a geodesic, $t \in [0,T)$, where t is the arc-length parameter. Assume J_1, \ldots, J_{n-1} are Jacobi vector fields along γ , all orthogonal to $\gamma'(t)$ and linearly independent at any point of γ . Assume further that

$$(J_i'(0), J_j(0)) = (J_i(0), J_j'(0))$$

for any i, j, where J'_i means covariant derivative of J_i with respect to γ' . Prove that for every $i = 1, \ldots, n-1$ and any 0 < s < t < T, we have $\frac{|J_i(s)|_g}{s} \ge \frac{|J_i(t)|_g}{t}$.

设 M 是 5 维紧致光滑流形 $SO(3) \times T^2$, 其中 T^2 为一个 2 维环面.

- (1) 是否存在 M 上的光滑黎曼度量 g 使得 Ricci 曲率严格为正?
- (2) 是否存在 M 上的光滑黎曼度量 g 使得 $Ric \equiv 0$?

如果存在请给出具体的例子,如果不存在请给出证明.

Let M be the 5-dimensional smooth compact manifold $SO(3) \times T^2$, where T^2 is a 2-dimensional torus.

- (1) Is there any smooth Riemannian metric g on M with strictly positive Ricci curvature?
- (2) Is there any smooth Riemannian metric g on M with $Ric \equiv 0$?

Write down concrete examples if they exist and give your proof if they do not exist.

四、应用与计算数学 Applied&Computational Mathematics

1.

一个简单图 G 称为"漂亮的",如果它的任意两个相邻顶点的度数不同. 对任意 $n \geq 2$, 定义 f(n) 为 n 阶"漂亮的"简单图的边数的最大值. 求满足

$$\lim_{n \to \infty} \frac{\binom{n}{2} - f(n)}{n^a} = b$$

的实数 a,b $(b \neq 0)$.

A simple graph G is called beautiful if any two adjacent vertices have different degrees. For any $n \geq 2$, define f(n) as the maximum number of edges in a beautiful graph with n vertices. Find the real numbers a, b ($b \neq 0$) satisfying that

$$\lim_{n \to \infty} \frac{\binom{n}{2} - f(n)}{n^a} = b.$$

令 a 和 b 为两个正整数,在一个不透明的袋子里放了 a 个红球和 b 个蓝球. 红球和蓝球除了颜色以外的其它特征相同,只能通过颜色来分辨. 小明进行如下的游戏:每一轮她从袋子里随机抽取一个球,如果这个球是蓝球,那么游戏结束;如果是红球,那么她将该球放回袋子并再加放一个红球到袋子之中(这样袋子中的红球增多了一个). 令 $E_{a,b}$ 为游戏总轮数的期望.

- (1) 当 a 与 b 为何值时, 期望 $E_{a,b}$ 取有限值?
- (2) 将 $E_{a,b}$ 表示为 a 与 b 的函数.
- (3) 假设小明知道袋中的总球数 N 但不知道 a 与 b 的值. 她先验地认为 a 在集合 $\{1, ..., N-1\}$ 中均匀分布. 在第几轮抽到红球的情况下她可以有 90% 的把握猜测 $E_{a,b}$ 取无穷值?

Let a and b be two strictly positive integers. Given an obscure bag containing a red balls and b blue balls which only differ in color, Alice plays the following game. In each round she picks randomly a ball in the bag. If the ball is blue, then the game terminates; otherwise she puts the ball back and adds another red ball in the bag (hence the number of red balls in the bag increases by 1). We denote by $E_{a,b}$ the expectation of the number of total rounds of the game.

- (1) For which values of a and b the expectation $E_{a,b}$ is finite?
- (2) Determine the value of $E_{a,b}$ as a function of a and b.
- (3) Assume that Alice knows the total number N of balls but does not know the values of a and b. She estimates a priori that the value of a uniformly distributes in $\{1, \ldots, N-1\}$. At the end of which round (that she picks a red ball) she could guess with a certainty of 90% that $E_{a,b}$ would be infinite?

3.

给定 n 个正实数 a_1, \dots, a_n ,假设它们满足 $a_1^2 + \dots + a_n^2 = 1$ 和 $a_1 + \dots + a_n = a$. 证明存在一种挑选系数 $\epsilon_1, \dots \epsilon_n$ 的方法,使得每个系数 ϵ_i 均为 1 或 -1,并且

$$|\epsilon_1 a_1 + \dots + \epsilon_n a_n| \le \frac{1}{a}.$$

比如当 n=5 且 $a_1=\cdots=a_5=1/\sqrt{5}$ 时 $a=\sqrt{5}$,可以取 $\epsilon_1=\epsilon_2=\epsilon_3=1$, $\epsilon_4=\epsilon_5=-1$, 这样 $|\epsilon_1a_1+\cdots+\epsilon_5a_5|=1/\sqrt{5}=1/a$.

Given n positive real numbers a_1, \dots, a_n such that they form a unit vector, i.e. $a_1^2 + \dots + a_n^2 = 1$. Let $a = a_1 + \dots + a_n$. Show that there exist coefficients $\epsilon_i \in \{-1, 1\}$ for $i = 1, \dots, n$, such that

$$|\epsilon_1 a_1 + \dots + \epsilon_n a_n| \le \frac{1}{a}.$$

For example, if n = 5 and $a_1 = \cdots = a_5 = 1/\sqrt{5}$, then $a = \sqrt{5}$, and $\epsilon_1 = \epsilon_2 = \epsilon_3 = 1$, $\epsilon_4 = \epsilon_5 = -1$ gives $\epsilon_1 a_1 + \cdots + \epsilon_5 a_5 = 1/\sqrt{5}$.

4.

在分子动力学中,人们常使用 overdamped Langevin equation

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}) + \sqrt{2\beta^{-1}}\boldsymbol{\eta}$$

来采样 Boltzmann 分布 $\rho_{\beta}(\boldsymbol{x}) = Z_{\beta}^{-1}e^{-\beta V(\boldsymbol{x})}$, 这里 $\boldsymbol{x} \in \mathbb{R}^{3n}$, $\beta = \frac{1}{k_BT} > 0$, k_B 是 Boltzmann 常数, T 是温度, $\boldsymbol{f}(\boldsymbol{x}) = -\nabla V(\boldsymbol{x})$ 是由势函数 $V(\boldsymbol{x})$ 决定的作用力, $\boldsymbol{\eta}$ 是一个 3n 维的白噪声, 而 $Z_{\beta} = \int_{\mathbb{R}^{3n}} e^{-\beta V(\boldsymbol{x})} d\boldsymbol{x}$ 是归一化常数. 考虑如下的两条耦合的采样轨道,

$$\begin{cases} \dot{\boldsymbol{x}}_1 = \boldsymbol{f}(\boldsymbol{x}_1) + \sqrt{2\beta_1^{-1}(t)}\boldsymbol{\eta}_1 \\ \dot{\boldsymbol{x}}_2 = \boldsymbol{f}(\boldsymbol{x}_2) + \sqrt{2\beta_2^{-1}(t)}\boldsymbol{\eta}_2, \end{cases}$$
(1)

其中 $\beta_1(t)$ 和 $\beta_2(t)$ 会交替地取值 $\beta > 0$ 和 $\bar{\beta} > 0$. 例如, 可选 $\bar{\beta} < \beta$ (即 $\bar{\beta}^{-1} > \beta^{-1}$)使得 $\bar{\beta}$ 对应的温度高于原系统的温度以提高采样效率. 按照频率 ν , $\beta_1(t)$ 和 $\beta_2(t)$ 会尝试互换取值, 如果互换是尝试从 $(\beta_1,\beta_2) = (\beta,\bar{\beta})$ 变成 $(\beta_1,\beta_2) = (\bar{\beta},\beta)$, 那么这种互换的接受概率为

$$\min\left(\frac{\rho_{\bar{\beta}}\left(\boldsymbol{x}_{1}\right)\rho_{\beta}\left(\boldsymbol{x}_{2}\right)}{\rho_{\beta}\left(\boldsymbol{x}_{1}\right)\rho_{\bar{\beta}}\left(\boldsymbol{x}_{2}\right)},1\right),$$

而另外一种互换的接受概率类似可得. 写出(无需证明)当频率 $\nu \to \infty$ 时(1)的极限方程, 我们称之为系统(A). 写出另一个 x_1 和 x_2 满足的随机动力方程, 我们称之为系统(B),使得系统(B)中只含有常系数的噪声项, 且系统(A)和系统(B)对应一样的不变分布.

In molecular dynamics, the overdamped Langevin equation

$$\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}) + \sqrt{2\beta^{-1}}\boldsymbol{\eta}$$

is used to sample the Boltzmann distribution $\rho_{\beta}(\boldsymbol{x}) = Z_{\beta}^{-1} e^{-\beta V(\boldsymbol{x})}$, where $\boldsymbol{x} \in \mathbb{R}^{3n}$, $\beta = \frac{1}{k_B T} > 0$, k_B is the Boltzmann constant, T denotes the temperature, $\boldsymbol{f}(\boldsymbol{x}) = -\nabla V(\boldsymbol{x})$ is the force associated with the potential $V(\boldsymbol{x})$, $\boldsymbol{\eta}$ is a 3n-dimensional white noise and $Z_{\beta} = \int_{\mathbb{R}^{3n}} e^{-\beta V(\boldsymbol{x})} d\boldsymbol{x}$. In a variant model, we consider two coupled sampling trajectories

$$\begin{cases}
\dot{\boldsymbol{x}}_{1} = \boldsymbol{f}(\boldsymbol{x}_{1}) + \sqrt{2\beta_{1}^{-1}(t)}\boldsymbol{\eta}_{1} \\
\dot{\boldsymbol{x}}_{2} = \boldsymbol{f}(\boldsymbol{x}_{2}) + \sqrt{2\beta_{2}^{-1}(t)}\boldsymbol{\eta}_{2},
\end{cases} (1)$$

where $\beta_1(t)$ and $\beta_2(t)$ alternatively swap between two values $\beta > 0$ and $\bar{\beta} > 0$. For example, we may take $\bar{\beta} < \beta$ (so that $\bar{\beta}^{-1} > \beta^{-1}$), and thus the sampling efficiency is improved because $\bar{\beta}$ corresponds to a higher temperature. These swaps are attempted with frequency ν , and the ones from $(\beta_1, \beta_2) = (\beta, \bar{\beta})$, $(\beta_1, \beta_2) = (\bar{\beta}, \beta)$ are accepted with probability

$$\min\left(rac{
ho_{ar{eta}}\left(oldsymbol{x}_{1}
ight)
ho_{eta}\left(oldsymbol{x}_{2}
ight)}{
ho_{eta}\left(oldsymbol{x}_{1}
ight)
ho_{ar{eta}}\left(oldsymbol{x}_{2}
ight)},1
ight),$$

and similarly for the ones from $(\beta_1, \beta_2) = (\bar{\beta}, \beta)$ to $(\beta_1, \beta_2) = (\beta, \bar{\beta})$. Write out (without proof) the limit equations of (1) when $\nu \to \infty$, which we name System (A). Find another dynamics for \boldsymbol{x}_1 and \boldsymbol{x}_2 , called System (B), such that System (B) contains only constant-coefficient noise terms, and System (A) and System (B) share the same invariant measure.

5.

假设 x_1, \ldots, x_n 是一组相异实数, y_1, \ldots, y_n 是另一组相异实数, 并且对于每个 $i=1,\ldots,n$ 都有 $y_i \geq x_i$. 一个单向运输 T 是一个从 $\{x_1,\ldots,x_n\}$ 到 $\{y_1,\ldots,y_n\}$ 的一一映射, 并且满足对于每个 $i=1,\ldots,n$ 都有 $T(x_i) \geq x_i$. (例如,对每个 $i=1,\ldots,n$ 使 $T(x_i) = y_i$ 就定义了一个单向运输.) T 的运输成本定义为

$$\sum_{i=1}^{n} (T(x_i) - x_i)^2.$$

- (1) 找到或描述分别最小化和最大化运输成本的两个单向运输,并证明它们的最优性.
- (2) 假设 $(x_n)_{n=1,2,\dots}$ 是一列来自标准正态分布的独立同分布序列,并且 $y_i=x_i+1$, $i=1,2,\dots$ 令 T_n^* 为从 $X_n:=\{x_1,\dots,x_n\}$ 到 $Y_n:=\{y_1,\dots,y_n\}$ 的最大化运输成本的单向运输. 计算以下随机量

$$\frac{\#\{x \in X_n : x \le 0, \ T_n^*(x) \le 1\}}{n}$$

当 $n \to \infty$ 时的极限 (在几乎必然 (a.s.) 意义下), 其中 # 表示集合的势.

Let x_1, \ldots, x_n be n distinct real numbers and y_1, \ldots, y_n are also distinct such that $y_i \ge x_i$ for $i = 1, \ldots, n$. A directional transport T is a bijection from $\{x_1, \ldots, x_n\}$ to $\{y_1, \ldots, y_n\}$ such that $T(x_i) \ge x_i$ for $i = 1, \ldots, n$. (For instance, letting $T(x_i) = y_i$ for $i = 1, \ldots, n$ defines a directional transport.) The transportation cost of T is

$$\sum_{i=1}^{n} (T(x_i) - x_i)^2.$$

- (1) Find or describe two directional transports which, respectively, minimize and maximize the transportation cost, and prove their optimality.
- (2) Suppose that $(x_n)_{n=1,2,...}$ is an iid sequence from the standard normal distribution and $y_i = x_i + 1, i = 1, 2, ...$ Let T_n^* be the directional transport with maximum transportation cost from $X_n := \{x_1, ..., x_n\}$ to $Y_n := \{y_1, ..., y_n\}$. Find the limit (in the almost sure sense) of the random quantity

$$\frac{\#\{x \in X_n : x \le 0, \ T_n^*(x) \le 1\}}{n}$$

as $n \to \infty$, where # is the cardinality of a set.