
















Noodles are beloved traditional food in China. There are many types of noodles and there are 
even new ones created everyday. This morning, Noodle Master Zhang, all of sudden, has a nice 
new idea. He sticks the two ends of a wide noodle dough together, (see the following picture). 
Then a wide noodle dough becomes a ring of dough.  

(Picture 1) 

As everyday how he cuts his noodle dough into two, Master Zhang now cuts the ring of dough 
along the centerline, then he’s got two identical rings of dough (see the following picture) 

(Picture 2) 

What a beautiful morning! As Noodle Master Zhang is feeling so good, he suddenly has another 
brilliant idea: he turns the noodle dough once, then glues them at the ends. In this way, he 
accidentally makes a Mobius Band (named after German mathematician August Ferdinand 
Mobius).  

(Picture 3) 

It doesn't take Master Zhang too long to get his second brilliant idea, third brilliant idea, etc., 
namely, Master Zhang turns the noodle dough twice, three times, …, n times, (all in the same 
direction), then glues the two ends together. These noodle rings do not have yet official 
mathematical names. Master Zhang gives them names according to the number of turns. For 
example, he calls his Mobius-Band-noodle-ring, 1-flip-noodle-ring, and those which are obtained 



after n times of turnings, n-flip-noodle-ring. See the following picture, for n=2, 3, and 7. And the 
very first one, without any turning, is called a trivial-noodle-ring, or simply a 0-flip-noodle-ring. 
From Master Zhang’s point of view, these noodle rings with different turning numbers are 
different from one another, because he can not change one into another in his kitchen, no matter 
how he stretches them).  

(Picture 4) 

Master Zhang then uses these ideas and opens an online noodle shop to sell these n-flip-noodle-
rings. It turns out to be rather hot and successful on the market. Someone makes for 100-year-
old birthday of their family member, 100-flip-noodle-rings; someone reserves 2019-flip-noodle-
rings for their company’s anniversary in 2019. Poor Master Zhang—his hands must be sore after 
so many turns :)). Now our question comes: take a 100-noodle-ring and a 2019-noodle-ring, if 
Master Zhang still cuts along the centerline, what will he get? 

A. A 200-flip-noodle-ring, and a noodle-ring that is not as constructed above, respectively;
B. Two 100-flip-noodle-rings, and a noodle-ring that is not as constructed above, respectively;
C. A 200-flip-noodle-ring, and a 0-flip-noodle-ring, respectively;
D. Two 100-flip-noodle-rings, and a 0-flip-noodle-ring, respectively.
E. None of the above choices



R1-2. Let n>1. Let A = (ai,j )n×n be an n × n square matrix with each 
entry ±1. Write v1, . . . , vn for the n row vectors of A. For two row
vectors v = (ai)1≤i≤n and v′ = (bi)1≤i≤n, define

v ∗ v′ = (aibi)1≤i≤n
and

v · v′ =
∑

1≤i≤n

aibi.

Assume that:

(1) for any i, j (1 ≤ i, j ≤ n), there exists k (1 ≤ k ≤ n) such that
vi ∗ vj = vk;

(2) for any i, j (1 ≤ i, j ≤ n, i 6= j), vi · vj = 0.

Prove that:

(i) the vector (1, . . . , 1)︸ ︷︷ ︸
n

is a row of A; for any other row vi, there

exist n
2

entries equal to 1, and n
2

entries equal to −1.
(ii) n = 2m is a power of 2.

(iii) when n = 2m, by applying permutations on rows and columns
of A, the square matrix A could be transformed to a square
matrix (

1 1
1 −1

)⊗
m

.

Here

X⊗m = X ⊗ · · · ⊗X︸ ︷︷ ︸
m

= (· · · (X ⊗X)⊗ · · · )⊗X︸ ︷︷ ︸
m

is the m-th tensor product of a square matrix X; for two square
matrices X = (xij )1≤i,j≤p and Y = (yi′j′ )1≤i′,j′≤q, their tensor prod-
uct is a pq × pq square matrix defined by

X ⊗ Y = (zkl)1≤k,l≤pq
where zkl = xij yi′j′ when we write k (and l) in the unique form
as k = p(i′ − 1) + i (and l = p(j′ − 1) + j) for integers i, j, i′, j′
with 1≤ i,j ≤p and 1≤ i′,j′ ≤q.

Proof. (i) take an row vi of A. By assumption there exists k such that
vk = vi ∗ vi = (1, . . . , 1)︸ ︷︷ ︸

n

.

(ii) and (iii) Method 1. Let G = {v1, . . . , vn}. With respect to the ∗
operation, the assumption implies that G is a group, with identity a row
vk = (1, . . . , 1)︸ ︷︷ ︸

n

. Since vi ∗ vi = (1, . . . , 1)︸ ︷︷ ︸
n

for each i, G is an elementary

abelian 2-group. Thus, n = 2m is a power of 2. By assumption,
AAt = nIn. Thus, AtA = nIn. Then, the columns of A are orthogonal
to each other, hence different to each other. By the definition of ∗, a
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column of A is just a character of A. Hence, the matrix A is just the
character table of A. As G ∼= (Z2)

n, A could be transformed to(
1 1
1 −1

)⊗
m

by applying permutations on rows and columns of A, where

(
1 1
1 −1

)
is the character table of Z2.

Method 2. By assumption, we could find a maximal set of rows
u1 = vi1 , . . . , um = vim of A such that u1 = (1, . . . , 1)︸ ︷︷ ︸

n

, and uk is orthog-

onal to any product of u1, . . . , uk−1 with respect to the ∗ operation.
Then, u1, . . . , um generate all rows of A with respect to the ∗ opera-
tion. Hence, n ≤ 2m. From the condition posed on u1, . . . , um, one
could show by an inductive argument that n = 2mk is a multiple of 2m

and there is a unique form of the tuple (u1, . . . , um) modulo permuta-
tion on columns of A. Since rows of A are distinct, then n ≤ 2m. Hence,
k = 1; and for a fixed m there is a unique A modulo permutations on
rows and columns of A, which is just(

1 1
1 −1

)⊗
m

.

�

R2-3.   For any even polynomial function on R with real co-efficients
f(x) = c0 + c1x2 + · · · + cnx2n,

define

T (f)(x) =

∫ +∞

−∞
e(x

2−y2)π cos(2πxy)f(y)dy.

(i) Show that T (f) is an even polynomial function on R whose
degree is equal to the degree of f(x).

(ii) For any n = 0, 1, 2, · · · , denote by EPn the set of all even poly-
nomial functions on R of degree less than or equal to 2n, which
forms a real linear space. Find the dimension of the subspace

Vn = {f ∈ EPn : T (f) = f}.

Solution.

(i). For any odd polynomial function on R with real coefficients

f(x) = c0x+ c1x
3 + · · ·+ cnx

2n+1,

define

S(f)(x) =

∫ +∞

−∞
e(x

2−y2)π sin(2πxy)f(y)dy.
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For n = 0, 1, 2, · · · , let An = T (x2n) and Bn = S(x2n+1). That is,

An(x) =

∫ +∞

−∞
e(x

2−y2)π cos(2πxy)y2ndy

Bn(x) =

∫ +∞

−∞
e(x

2−y2)π sin(2πxy)y2n+1dy

For n = 1, 2, 3, · · · , we integrate by parts:

An(x) =
1

−2π

∫ +∞

−∞

(
(−2πy)e(x

2−y2)π
)
· cos(2πxy)y2n−1dy

=
1

−2π

[
0−

∫ +∞

−∞
e(x

2−y2)π · ∂
∂y

(
cos(2πxy)y2n−1

)
dy

]
=
−2πx

2π
·
∫ +∞

−∞
e(x

2−y2)π · sin(2πxy)y2n−1dy +

+
2n− 1

2π
·
∫ +∞

−∞
e(x

2−y2)π · cos(2πxy)y2n−2dy

= −xBn−1(x) +
2n− 1

2π
· An−1(x),

and

Bn(x) =
1

−2π

∫ +∞

−∞

(
(−2πy)e(x

2−y2)π
)
· sin(2πxy)y2ndy

=
1

−2π

[
0−

∫ +∞

−∞
e(x

2−y2)π · ∂
∂y

(
sin(2πxy)y2n

)
dy

]
=

2πx

2π
·
∫ +∞

−∞
e(x

2−y2)π · cos(2πxy)y2ndy +

+
2n

2π
·
∫ +∞

−∞
e(x

2−y2)π · sin(2πxy)y2n−1dy

= xAn(x) +
n

π
·Bn−1(x).

Therefore, for n = 1, 2, 3, · · · , we obtain the relations

(1) An(x) = −xBn−1(x) +
2n− 1

2π
· An−1(x),

and

(2) Bn(x) = xAn(x) +
n

π
·Bn−1(x).

We also observe

(3) B0(x) = xA0(x).
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We claim that A0(x) is constant 1. In fact,

dA0(x)

dx
=

∫ +∞

−∞

∂

∂x

(
e(x

2−y2)π cos(2πxy)
)

dy

=

∫ +∞

−∞
e(x

2−y2)π · (2πx cos(2πxy)− 2πy sin(2πxy)) dy

= 2πxA0(x)− 2πB0(x)

= 0,

where the last step follows from (3). We also observe

A0(0) =

∫ +∞

−∞
e−y

2πdy = 1,

because of the well-known Gauss integral
∫
R e
−t2dt =

√
π. In fact,(∫

R
e−t

2

dt

)2

=

∫
R×R

e−ξ
2−η2dξdη =

∫ +∞

0

∫ 2π

0

e−r
2

rdrdθ = π.

Therefore,

(4) A0(x) = 1

holds for all x ∈ R as claimed.
By (4), (3), (1), and (2), we see by induction that An are all even

polynomial functions of degree 2n, and Bn are all odd polynomials
functions of degree 2n+ 1. Moreover,

An(x) = (−1)nx2n + lower even-order terms

and

Bn(x) = (−1)nx2n+1 + lower odd-order terms

In particular, this proves (i).

(ii). (One with some background in Fourier transform will be able to
guess T (An)(x) = x2n, which we provide a direct proof.) WE prove the
following claim by induction:

(5) T (An)(x) = x2n, S(Bn)(x) = x2n+1,

for n = 0, 1, 2, · · · .
To see this, we compute:

dT (An)(x)

dx
=

d

dx

[∫ +∞

−∞
e(x

2−y2)π cos(2πxy)An(y)dy

]
=

∫ +∞

−∞
e(x

2−y2)π [2πx cos(2πxy)− 2πy sin(2πxy)] · An(y)dy

= 2πxT (An)(x)− 2π
(
S(Bn(x))− n

π
· S(Bn−1(x))

)
= 2πxT (An)(x)− 2πS(Bn(x)) + 2nS(Bn−1),
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using (2). Similarly,

dS(Bn)(x)

dx
=

d

dx

[∫ +∞

−∞
e(x

2−y2)π sin(2πxy)Bn(y)dy

]
=

∫ +∞

−∞
e(x

2−y2)π [2πx sin(2πxy) + 2πy cos(2πxy)] ·Bn(y)dy

= 2πxS(Bn)(x) + 2π

(
−T (An+1(x)) +

2n+ 1

2π
· T (An)

)
= 2πxS(Bn)(x)− 2πT (An+1(x)) + (2n+ 1)T (An−1),

using (1). Therefore, for n = 0, 1, 2, · · · , we obtain

2πT (An+1)(x) = 2πxS(Bn)(x)− dS(Bn)(x)

dx
+ (2n+ 1)T (An),

2πS(Bn)(x) = 2πxT (An)(x)− dT (An)(x)

dx
+ 2nS(Bn−1),

where B−1(x) is defined as 0 by convention. The above formulas imply
(5) immediately by induction.

The linear transformation Tn = T |EPn : EPn → EPn has an upper-
triangular matrix over the basis (1, x2, x4, · · · , x2n). It has alternating
diagonal entries 1,−1, 1, · · · , (−1)n by the above leading term formula.
Then the characteristic polynomial of Tn is

det(λI − Tn) =

{
(λ2 − 1)m+1 n = 2m+ 1

(λ2 − 1)m(λ− 1) n = 2m

The formula in (5) about An implies Tn−1 = Tn on EPn, so Tn is diago-nalizable. 
Therefore, Tn fixes a subspace of dimension m+1 = bn/2c+1 on EPn.

R1-3. Let h(z) be a polynomial in variable z. Consider the degree 3

equation y3 − 3zy + h(z) = 0 of y, with coefficients in the polynomial ring C[z].

(i) when h(z) = −z3−1, find a solution y = f(z) which is a degree
one polynomial function.

(ii) suppose that the equation y3 − 3zy + h(z) = 0 has three dis-
tinct solutions y = f1(z), f2(z), f3(z) with each fj (z) an entire
function of z. What can h(z) be?
Recall that an entire function is a holomorphic function on the 
complex plane.

Solution. Let ω = e
2πi
3 .

Answer: (i) y = z + 1, ωz + ω2 or ω2z + ω.
(ii) h(z) = c3z3 + c−3 for some constant c 6= 0.

Lemma 0.1. Let g(z) be an entire function, and k be a positive integer.
If g(z)k is a polynomial, then g(z) is also a polynomial.

Proof of the lemma. Write φ(z) = g(z)k. Since g(z) is an entire func-
tion, each zero of φ(z) has multiplicity a multiple of k. Thus, g(z) =
k
√
φ(z) is still a polynomial. �
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Proof of the answer. (i) by a direct calculation.
(ii) write

u =
1

3
(f1(z) + ωf2(z) + ω2f3(z))

and

v =
1

3
(f1(z) + ω2f2(z) + ωf3(z)).

By f1(z) + f2(z) + f3(z) = 0, we get

f1(z) = u+ v, f2(z) = ω2u+ ωv, and f3(z) = ωu+ ω2v.

Therefore, −3z = −3uv and −h(z) = u3 + v3. Let ∆ = 4z3 + 27h(z)2

be the discriminant. Then,

∆ = 4(−3uv)3 + 27(u3 + v3)2 = 27(u3 − v3)2.
By the above lemma, u3 − v3 is a polynomial. As u3 + v3 = −h(z)
is also a polynomial, both u3 and v3 are polynomials. By the above
lemma again, both u and v are polynomials. By −3z = −3uv, we may
assume that u = −cz and v = −c−1 for some constant c 6= 0. Then,
h(z) = c3z3 + c−3. �



1 Problem 1

A seller on Taobao has launched a product of “unbreakable glass” that they claim can fall from 
high altitudes without breaking or cracking. Alibaba Quality Inspectors spot this product and 
decide to perform a dropping test in a 120-story building. They take three identical glasses from 
the seller and want to find out the highest floor where the glass can fall without breaking. When 
a glass falls from the window of the t−th floor, it will have one and only one of the following 
consequences:

(a) no breakage, no crack;

(b) no breakage, but cracked;

(c) broken.

We assume that if (a) occurs on the tth floor and (b) occurs on the (t+ 1)th floor, (b) will still

occur on (t+ 2)th floor but (c) will occur on the (t+ 3)th floor. For example, one possibility is

that (a) occurs on the fifth floor or below, (b) occurs on the sixth and seventh floors, and (c)

occurs on the eighth floor or above.

If the glass falls from the window on the first floor and either (b) or (c) occurs, we write

N = 0. For each n = 1, . . . , 119, if the fall from the nth floor does not cracking the glass but the

fall from the (n + 1)th floor ends up cracking it, then write N = n. Finally, if the glass is still

not cracked when falling from the 120th floor, we write N = 120. Notice that once the glass is

cracked, it cannot be used again.

The inspectors want to perform a sequence of dropping tests so that no matter what N ∈
{0, . . . , 120} is, they can throw from no more than M different floors to compute N . What is the

minimum value of M? (Of course, throwing objects from a height is dangerous, so one should

never do it.)

A. 8 B. 9 C. 10 D. none of above

1



2 Problem: Ant Forest

Ant Forest is the world’s largest platform for personal carbon accounts, which record each per-

son’s low-carbon behavior in quantitative terms. When an Alipay user gathers enough “energy”,

he/she can apply to Ant Forest to plant a real tree. As of April 22, 2019 (World Earth Day), a

total number of 500 million users of the Alipay Ant Forest have planted 100 million real trees in

Northwest China covering a total area of 112,000 hectares, and protected a total area of 12,000

hectares of conservation land.

1. In this question, we consider planting a tree at the center point of each small square in

a 3 × 4 rectangular area. It is required that there cannot be three consecutive (or more)

trees in three directions: horizontal, vertical, and diagonal. Let 1 indicate that trees can

be planted, and 0 indicates that trees cannot be planted. A diagram that satisfies the

planting conditions is

1 1 0 1

0 1 0 0

0 0 0 1

A diagram that does not satisfy the planting conditions is

1 0 0 1

0 0 1 0

0 1 0 1

(a) What is the maximum number of trees that can be planted in a 3 × 4 area? Please

give a way to plant them.

(b) On the premise that the answer to the previous question is how many trees can be

planted at most, how many ways are there in total? Please give ideas and answers.

2. Consider a 1 × n region consisting of n squares in a row, and we plant one tree in each

square sequentially from the first square to the nth square. There are only two types of

trees, Populus euphratica and Pinus sylvestris. Suppose the tree planted in the first square

is randomly chosen to be Populus euphratica or Pinus sylvestris, and the probability that

it is a Populus euphratica is equal to r. For each subsequent square, if Populus euphratica

is planted in the previous square, then the probability of planting Populus euphratica

in the current square is s; if Pinus sylvestris is planted in the previous square, then the

probability of planting Pinus sylvestris in the current square is t, and 0 < r, s, t < 1.

(a) Suppose r = 1
3 , s+ t 6= 1. Does there exist s and t such that for any i, 2 ≤ i ≤ n, the

probability that the tree in the ith square is a Populus euphratica is a constant not

depending on i?

2



(b) Suppose r = 1
3 , s = 3

4 , t = 4
5 . Suppose we observe that the tree planted in the 2019th

square is a Populus euphratica but we do not observe the type of trees planted in any

other squares. What is the probability that the tree planted in the first square is also

a Populus euphratica?

3. In order to control costs for a sustainable development, Ant Forest wants to obtain planting

quota from the public welfare organization before the number of user applications is known.

Denote the number of applications from the Alipay users for Populus euphratica and Pinus

sylvestris by D1 and D2, respectively. Denote the distribution function of Di by Fi, and

denote the mean and variance of Di as µi and σ2i (i = 1, 2). Suppose Ant Forest knows

µi, σ
2
i but do not know other information about Fi, and needs to decide the reserved quota

for both types of trees, which is written as Qi (i = 1, 2). Due to the environmental carrying

capacity, the total number of trees planted cannot exceed a given constant M , i.e.,

Q1 +Q2 ≤M .

We assume that M ≥ µ1 + µ2.

The ordering cost for both types of trees is cQi (i = 1, 2). If the reserved quota Qi is smaller

than the number of applications Di, i.e., Qi ≤ Di, there is an additional cost m[Di−Qi]+

(i = 1, 2) because of the additional logistics costs and etc. Here [x]+ , max{x, 0} and c,m

are given constants satisfying m−c
c >

(
σ1
µ1

)2
>
(
σ2
µ2

)2
.

Ant Forest wants to choose Qi ≥ 0 (i = 1, 2) such that the worst-case expectation of

total costs is minimized, where the worst case is among all possible choice of Fi with

known mean µi and variance σ2i , i = 1, 2. Mathematically, the goal is solve the following

optimization problem:

min
Q1,Q2

max
F1∈F1,F2∈F2

∑
i=1,2

[
cQi +

∫ ∞
0

(
m[ξ −Qi]+

)
dFi(ξ)

]
,

subject to Q1 +Q2 ≤M, Q1, Q2 ≥ 0,

(1)

where Fi is the set of all cumulative distribution functions with mean µi and variance σ2i

(i = 1, 2) whose support is non-negative.

Question: please solve the problem (1) and derive a closed-form solution of the optimal

reserved quota Qi, i = 1, 2.

3 Problem: Simplified Models of Elevators

Consider an (n+ 1)-story building with a lobby (the 0th floor) and a penthouse (the nth floor).

The height of the kth floor is kh, for k = 0, 1, . . . , n. The penthouse is H = nh high from

ground.

3



For simplicity, assume an elevator in the building either stops (at 0 speed) or runs at the

fixed speed v and has an infinite capacity, unless otherwise specified. Assume no delay over

changing speeds between 0 and v.

1. Suppose an elevator leaves from the lobby at time 0 to travel up.

At time 0, at each floor k = 1, . . . , n − 1, a person who wants to go up to the penthouse

is waiting to enter the elevator, and another person who wants to go down to the lobby

is waiting to enter the elevator until elevator comes down and stops at the floor. So the

elevator is going to sequentially stop at floors 1, 2, . . . , n, n−1, . . . , 0. Each stop takes time

c seconds regardless of how many people enter or leave the elevator.

Define waiting time (since time 0) of a person as the time when the person enters the

elevator. What is the average waiting time of the 2(n − 1) persons, that is, the total

waiting time divided by (2(n− 1))? Ignore their time inside the elevator.

2. In this question, assume the elevator travels non-stop between the lobby and the penthouse.

Any stop takes 0 time.

An ELEMETM rider arrives at the lobby to deliver a meal to a resident. At his or her

arrival time, the elevator is going either up or down with equal probability, and the elevator

is at height X, which is a random variable uniformly distributed on [0, H]. The resident

who expects the delivery is at height Y , which is a random variable uniformly distributed

on [0, H] and independent of X.

(a) Suppose the rider will wait at the lobby until the elevator comes down so that he can

take the elevator to go up to the resident’s floor. What is rider’s expected waiting

time before he enters the elevator?

(b) Suppose instead, upon the rider arrives at the lobby, the resident immediately tries

to take the elevator down to the lobby to meet the rider, and the rider will just wait

at the lobby. What is the expected waiting time of the rider before he or she meets

the resident at the lobby?

3. Starting with this question, we treat floors as continuous variables for simplicity. Sup-

pose the elevator carries x0 people and leaves the lobby at time 0. Their destinations

are D1, · · · , Dx0 ∈ [0, n], which are independently and identically distributed continuous

random variables with a certain distribution F on [0, n].

After all of them reach their destinations, the elevator immediately starts to go down

toward the lobby. There are no additional passengers. Assume the elevator returns to the

lobby at time

S,2 max{D1, · · · , Dx0}+ 5x0 , (2)

4



which is known as average round-trip time. (This formula of S has incorporated the

elevator’s speed and average time for each stop, so one should ignore v and each floor’s

height.)

(a) Round-trip time of a single elevator. Write the expected time of return as

fF (x0) , E[S] , (3)

which depends on F and x0. Let F be the (continuous) uniform distribution on [0, n].

Compute fF (x0).

(b) Two elevators. In this question, we consider a building with two elevators. Pas-

sengers arrive at the lobby at rate p. So on average p people arrive to wait for an

elevator to go up in each unit of time. Compare the following designs:

• Two identical but separate elevators serve all the floors. Assume each passenger

comes and waits for one of the two elevators (even if the other elevator comes

first). For each elevator, passengers arrive at the rate a = p
2 , and their destination

follows a (continuous) uniform distribution F on [0, n].

• Low-floor and high-floor elevators. Assume one elevator serves destinations in

[0, n2 ] and the other serves destinations in [n2 , n]. The arrival rate for each elevator

remains at a = p
2 . The destinations follow (continuous) uniform distributions on

[0, n2 ] and [n2 , n] for low-floor and high-floor elevators, respectively.

To compute average round trip time S > 0 of each elevator, we need to solve the

following equation:

fF (aS) = S , (4)

where fF is defined in the last question.

Write down the solution S for each elevator in terms of n and p for each of the two

designs. Let us call it as function g(n, p), which we use in the next question.

(c) Elevators with interlaced destinations. Assign Elevator 1 to serve the desti-

nations in [a0, a1], [a2, a3], . . . , [a2k−2, a2k−1] and Elevator 2 to [a1, a2], [a3, a4], . . . ,

[a2k−1, a2k], where 0 = a0 < a1 < · · · < a2k = n.

Assume the passengers whose destinations are in [b, c] arrive at the rate p(c − b)/n.

Therefore, those that need take Elevator 1 to their destinations arrive at the rate

p1 ,
p
n

∑k
i=1(a2i−1−a2i−2) and those who take Elevator 2 at p2 ,

p
n

∑k
j=1(a2j−a2j−1).

(i) For each Elevator r = 1, 2, use your function g in the last question to express the

solutions Sr to fF (prSr) = Sr in n, pr.
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(ii) Define the capacity of Elevator r = 1, 2 as

Mr , prn · lim
n→∞

g(n, pr)

n
. (5)

Find k ≥ 1 and 0 < a1 < · · · < a2k−1 < n that minimize M , max{M1,M2}. If

you cannot find a concise formula, write down the key steps and highlight your

final answer with a box.
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