APL,PRB:二维铁电材料In2Se3中的拓扑性质研究

工作一:Appl. Phys. Lett. 124, 043101 (2024)

Doping induced multiferroicity and quantum anomalous Hall effect in α-In2Se3 thin films

α-In2Se3薄膜中,掺杂诱导的多铁性和量子反常霍尔效应


Abstract: In flatband materials, the strong Coulomb interaction between electrons can lead to exotic physical phenomena. Recently, α-In2Se3 thin films were found to possess ferroelectricity and flat bands. In this work, using first-principles calculations, we find that for the monolayer, there is a Weyl point at Γ in the flatband, where the inclusion of the spin–orbit coupling opens a gap. Shifting the Fermi level into the spin–orbit gap gives rise to nontrivial band topology, which is preserved for the bilayer regardless of the interlayer polarization couplings.

We further calculate the Chern number and edge states for both the monolayer and bilayer, for which the results suggest that they become quantum anomalous Hall insulators under appropriate dopings. Moreover, we find that the doping-induced magnetism for the In2Se3 bilayer is strongly dependent on the interlayer polarization coupling. Therefore, doping the flat bands in In2Se3 bilayer can also yield multiferroicity, where the magnetism is electrically tunable as the system transforms between different polarization states. Our study, thus, reveals that multiferroicity and nontrivial band topology can be unified into one material for designing multifunctional electronic devices.


摘要:在平带材料中,电子之间的强库仑相互作用会导致奇异的物理现象。最近,发现α-In2Se3薄膜具有铁电性和平带。在这项工作中,使用第一原理计算,我们发现对于单层,在平带中的Γ处存在一个Weyl点,考虑自旋轨道耦合后打开了一个能隙。将费米能级转移到自旋轨道间隙中会产生非平凡的能带拓扑,无论层间极化耦合如何,双层都会保留这种拓扑。

我们进一步计算了单层和双层的陈数和边缘态,结果表明它们在适当的掺杂下成为量子反常霍尔绝缘体。此外,我们发现In2Se3双层中掺杂诱导的磁性强烈依赖于层间极化耦合。因此,在In2Se3双层中对平带进行掺杂也可以产生多铁性,当系统在不同极化状态之间转换时,磁性是电可调的。因此,我们的研究表明,多铁性和非平凡的能带拓扑可以统一在一种材料,用于设计多功能电子器件。

图1. 单层In2Se3的几何结构和电子结构。(a, b) 单层In2Se3的两个极化态,分别称为FE1和FE2。P表示极化,箭头表示其方向。(c, d) 分别为无自旋轨道耦合和有自旋轨道耦合的能带结构。(e, f) 费米能级分别在EF1和EF2的单层In2Se3的WCC和边缘态。

图2. 掺杂对单层In2Se3的几何结构和电子结构的影响。(a)掺杂诱导的磁化强度随掺杂大小的变化。(b) Se2原子的位移随掺杂大小的变化。(c)和(d)分别为没有SOC和有SOC时,单层In2Se3在0.5 h/f.u.时的能带结构。(e)和(f)分别为计算出的WCC和边缘态。

图3. 无和有SOC的三种极化态的能带结构。图层中的极化值用箭头表示。插图描述了极化状态,分别命名为C1、C2和C3。(a)和(b)、(c)和(d),以及(e)和(f)分别是 C1、C2和C3。

图4. 空穴掺杂的In2Se3双层中的极化相关铁磁性。(a)磁化强度随空穴掺杂的变化。(b)C1、C2和C3极化构型中原子的磁化强度分布。箭头表示各层中的极化。(c)掺杂0.3 h/f.u的In2Se3双层极化态转变的动力学途径。(d) C1 WCC。

工作二:Phys. Rev. B 109, 085432 (2024)

Ferroelectrically tunable topological phase transition in In2Se3 thin films

In2Se3薄膜中的铁电可调拓扑相变


Abstract: Materials with ferroelectrically switchable topological properties are of interest for both fundamental physics and practical applications. Using first-principles calculations, we find that stacking ferroelectric α-In2Se3 monolayers into a bilayer leads to polarization-dependent band structures, which yields polarization-dependent topological properties. Specifically, we find that the states with interlayer ferroelectric couplings are quantum spin Hall insulators, while those with antiferroelectric polarizations are normal insulators. We further find that In2Se3 trilayer and quadlayer exhibit nontrivial band topology as long as in the structure the ferroelectric In2Se3 bilayer is antiferroelectrically coupled to In2Se3 monolayers or other ferroelectric In2Se3 bilayer. Otherwise the system is topologically trivial. The reason is that near the Fermi level the band structure of the ferroelectric In2Se3 bilayer has to be maintained for the nontrivial band topology. This feature can be used to design nontrivial band topology for the thicker films by a proper combination of the interlayer polarization couplings. The topological properties can be ferroelectrically tunable using the dipole locking effect. Our study reveals switchable band topology in a family of natural ferroelectrics, which provide a platform for designing new functional devices.


摘要:具有铁电可切换拓扑特性的材料对于基础物理和实际应用都很感兴趣。使用第一性原理计算,我们发现将铁电α-In2Se3单层堆叠成双层会产生极化相关的能带结构,从而产生极化相关的拓扑特性。具体来说,我们发现具有层间铁电耦合的状态是量子自旋霍尔绝缘体,而具有反铁电极化的状态是正常绝缘体。我们进一步发现,只要在结构中铁电In2Se3双层与In2Se3单层或其他In2Se3双层具有反铁电耦合,那么In2Se3三层和四层就表现出非平凡的带拓扑。否则,系统在拓扑上是微不足道的。

原因是在费米能级附近,必须保持铁电 In2Se3 双层的能带结构才能实现非平凡的能带拓扑。该功能可用于通过层间偏振耦合的适当组合来设计较厚薄膜的非平凡能带拓扑。利用偶极锁定效应可以对拓扑特性进行铁电调节。我们的研究揭示了一系列天然铁电体中的可切换能带拓扑,这为设计新功能器件提供了平台。

图1. In2Se3-1L的电子结构。(a)具有不同极化态的In2Se3-1L的几何结构。极化现象用箭头表示。具有向下极化的状态表示为FE1,而具有向上极化的状态则称为FE2。(b) 具有自旋–轨道耦合的能带结构。(c)在Γ处的价带和导带的电荷密度分布,即VBΓ和CBΓ. (d) VBΓ和CBΓ的波函数. (e) In2Se3-1L的WCC的演化。

图2. In2Se3- 2L的能带结构的极化依赖性。(a)In2Se3-2L的极化态。每个结构的总能量在结构下面给出。在(a).中所示的状态的(b)能带结构(c)价带和导带的波函数。

图3. In2Se3-2L中FE的能带拓扑结构,即构型C3。(a)带有SOC的能带结构。(b)WCC的演化。(c)锯齿状边缘的边缘态。

图4. In2Se3-3L在四种状态下具有SOC的能带结构。插图显示了等效的极化构型。

图5. (a)-(d) In2Se3-3L在S1、S2、S3和S4极化态下WCC的演化。(e)-(h)它们各自对应的一个锯齿形边缘的边界态。

版权声明:
作者:Mr李
链接:https://www.techfm.club/p/111583.html
来源:TechFM
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>