多任务学习模型之ESMM介绍与实现
简介:本文介绍的是阿里巴巴团队发表在 SIGIR’2018 的论文《Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate》。文章基于 Multi-Task Learning (MTL) 的思路,提出一种名为ESMM的CVR预估模型,有效解决了真实场景中CVR预估面临的数据稀疏以及样本选择偏差这两个关键问题。后续还会陆续介绍MMoE,PLE,DBMTL等多任务学习模型。
多任务学习背景
目前工业中使用的推荐算法已不只局限在单目标(ctr)任务上,还需要关注后续的转换链路,如是否评论、收藏、加购、购买、观看时长等目标。
本文介绍的是阿里巴巴团队发表在 SIGIR’2018 的论文《Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate》。文章基于 Multi-Task Learni
共有 0 条评论