QQ 音乐推荐系统的精细化调控

导读: 大家好,我是来自QQ音乐数据科学团队的Bill,接下来由我给大家分享QQ音乐在内容理解和精细化运营方面的一些实践和经验,副标题是推荐系统的精细化调控,相比于前面分享的一些硬核的算法模型和系统架构,我这里更多会介绍一些更显性的、更具可解释性的一些数据驱动方法在内容精细化运营场景的应用。
本文主要分为5部分:第1部分会介绍业务背景、总体解决方案和收益,第2~4部分分别介绍内容理解、运营中台、投放系统的具体实现方案,最后做一个简单的总结和展望。
01
背景与方案

QQ音乐作为一个以PGC内容为主的一款产品,编辑运营的内容占据了用户消费的很大一块流量,运营的诉求是多种多样的:比如新歌运营,重点流派运营(像国风、说唱、韩流等),以及综艺影视歌曲、热点事件或热点歌曲艺人、重点节日或活动的运营等等。
一方面,我们传统的运营手段是通过左边这张图中的 音乐馆 tab 里面的各个入口进行人工配置的,它存在的问题是:
比较依赖人工,甚至有时候需要7*24小时处理;入口众多且比较分散,基本无法联动;运营的标准差异较大,缺乏数据反馈;能够展示的内

QQ 音乐推荐系统的精细化调控最先出现在Python成神之路

版权声明:
作者:lichengxin
链接:https://www.techfm.club/p/20072.html
来源:TechFM
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>