从Scanpy的Anndata对象提取信息并转成Seurat对象(适用于空间组且涉及h5文件读写)2022-06-14
关键字
- Anndata对象转成Seurat对象
- h5文件读写
- 空间组格式转换
已补充快速使用的函数整理版本,如果不想看细节可以直接看已整理好的版本。
适用背景
众所周知,单细胞数据分析有两大软件:基于R语言的Seurat和基于Python的Scanpy,在平时的分析中常常需要把Seurat对象转成Scanpy的Anndata对象,这已经有比较成熟的流程了。但是,如果反过来把Anndata对象转成Seurat对象,网上搜到的方案寥寥无几,而且在本人亲测之下均报错无法成功实现。再加上我需要转的是空间组对象,结构比单细胞的更为复杂,只好自己想法从Anndata对象提取信息重新构建出一个Seurat对象了。
这个步骤主要分为2步:
步骤一 从Scanpy的Anndata对象中提取信息
- 1提取矩阵
import os
import sys
import scanpy as sc
import anndata as ad
import numpy as np
import pandas as pd
import h5py
ob1=sc.read('tmp.h5ad')
mat=pd.DataFrame(data=ob1.X.todense(),index=ob1.obs_names,columns=ob1.var_names)
mat.to_hdf("mat.h5","mat")
如果要在Python里重新读取h5格式的矩阵,可以运行下面代码:
mat=pd.read_hdf("mat.h5",key="mat")
上面的脚本是我测试过比较好的保存矩阵的方案,下面代码块则是最初的版本,但是在R里面读入之后会缺失行名和列名,所以还要额外保存行名与列名,之后加上,特别麻烦,所以采用上面的代码块更为简洁方便。
mat=ob1.X.todense().T
with h5py.File('mat.h5','w') as f1:
f1.create_dataset("mat",data=mat)
##在Python里读取h5格式矩阵的方法
with h5py.File('mat.h5','r') as f1:
mat=f1['mat'][:]
为什么用h5保存矩阵?
理论上是可以转成数据框之后保存为csv或tsv文件,但这样保存很慢,读取数据也很慢,因此存为h5文件更加方便。但对于小文件,h5文件反而占的空间更大,但h5文件应该是压缩过的,就很奇怪,不太懂其中原理,但如果是大文件则能有效进行压缩使得所占空间更小。
pd.DataFrame(data=ob1.X.todense().T, index=ob1.var_names,columns=ob1.obs_names).to_csv('raw_mat.csv',sep="/t",float_format='%.0f')
- 2 提取metadata信息
meta=pd.DataFrame(data=ob1.obs)
meta.to_csv('metadata.tsv',sep="/t")
- 3 提取坐标信息(UMAP坐标或空间组坐标)
#保存UMAP坐标
cord=pd.DataFrame(data=ob1.obsm['X_umap'],index=ob1.obs_names,columns=['x','y'])
cord.to_csv('position_X_umap.tsv',sep="/t")
#保存空间坐标
cord_name='spatial'
cord=pd.DataFrame(data=ob1.obsm[cord_name],index=ob1.obs_names,columns=['x','y'])
cord.to_csv('position_'+cord_name+'.tsv',sep="/t")
提取完以上信息之后,就可以在R里面重建Seurat对象了。
步骤二 重建Seurat对象
- 1 读取上面提取的信息
library(rhdf5)
library(Matrix)
mydata <- h5read("mat.h5","mat")
#如果在Python保存h5文件是用【with h5py.File】方式则直接运行上面一行代码即可得到矩阵的值,但之后要手动添加行名和列名,下面的代码不适用,但如果用的【to_hdf】则运行下面代码即可。
#获取矩阵值
mat <- mydata$block0_values
#添加行名
rownames(mat) <- mydata$axis0
#添加列名
colnames(mat) <- mydata$axis1
#转成稀疏矩阵
mat <- Matrix(mat, sparse = TRUE)
#读取metadata信息
cord_name='X_umap'
meta <- read.table('metadata.tsv',sep="/t",header=T,row.names=1)
pos <- read.table(paste0('position_',cord_name,'.tsv'),sep="/t",header=T,row.names=1)
- 2 重建单细胞Seurat对象
obj <- CreateSeuratObject(mat,assay='Spatial',meta.data=meta)
需要对seurat对象进行简单聚类后才能添加UMAP坐标信息,可略过直接进行常规分析
obj <- seob_cluster(obj)
obj@[email protected][,1]<-pos[,1]
obj@[email protected][,2]<-pos[,2]
如果只是单细胞数据,以上步骤已经足够了,但如果是重建一个Seurat空间组对象,其实也就是填补image的slice1槽,就需要运行以下脚本。
- 3 重建空间组Seurat对象
library(dplyr)
library(data.table)
library(Matrix)
library(rjson)
#以下脚本参考了部分华大生命科学研究院的余浩师兄和邹轩轩师姐写的脚本,在此表示感谢
tissue_lowres_image <- matrix(1, max(pos$y), max(pos$x))
tissue_positions_list <- data.frame(row.names = colnames(obj),
tissue = 1,
row = pos$y, col = pos$x,
imagerow = pos$y, imagecol = pos$x)
scalefactors_json <- toJSON(list(fiducial_diameter_fullres = 1,
tissue_hires_scalef = 1,
tissue_lowres_scalef = 1))
mat <- obj@assays$Spatial@counts
seurat_spatialObj <- CreateSeuratObject(mat, project = 'Spatial', assay = 'Spatial',min.cells=5, min.features=5)
generate_spatialObj <- function(image, scale.factors, tissue.positions, filter.matrix = TRUE)
{
if (filter.matrix) {
tissue.positions <- tissue.positions[which(tissue.positions$tissue == 1), , drop = FALSE]
}
unnormalized.radius <- scale.factors$fiducial_diameter_fullres * scale.factors$tissue_lowres_scalef
spot.radius <- unnormalized.radius / max(dim(image))
return(new(Class = 'VisiumV1',
image = image,
scale.factors = scalefactors(spot = scale.factors$tissue_hires_scalef,
fiducial = scale.factors$fiducial_diameter_fullres,
hires = scale.factors$tissue_hires_scalef,
lowres = scale.factors$tissue_lowres_scalef),
coordinates = tissue.positions,
spot.radius = spot.radius))
}
spatialObj <- generate_spatialObj(image = tissue_lowres_image,
scale.factors = fromJSON(scalefactors_json),
tissue.positions = tissue_positions_list)
spatialObj <- spatialObj[Cells(seurat_spatialObj)]
DefaultAssay(spatialObj) <- 'Spatial'
seurat_spatialObj[['slice1']] <- spatialObj
看一下新建的对象结构,说明已经是一个标准的Seurat空间组对象了:
> str(seurat_spatialObj@images$slice1)
Formal class 'VisiumV1' [package "Seurat"] with 6 slots
..@ image : num [1:6, 1:9] 1 1 1 1 1 1 1 1 1 1 ...
..@ scale.factors:List of 4
.. ..$ spot : num 1
.. ..$ fiducial: num 1
.. ..$ hires : num 1
.. ..$ lowres : num 1
.. ..- attr(*, "class")= chr "scalefactors"
..@ coordinates :'data.frame': 71668 obs. of 5 variables:
.. ..$ tissue : num [1:71668] 1 1 1 1 1 1 1 1 1 1 ...
.. ..$ row : num [1:71668] -2.904 -2.379 -0.798 -2.162 -1.436 ...
.. ..$ col : num [1:71668] 5.84 5.58 8.63 7.08 7.99 ...
.. ..$ imagerow: num [1:71668] -2.904 -2.379 -0.798 -2.162 -1.436 ...
.. ..$ imagecol: num [1:71668] 5.84 5.58 8.63 7.08 7.99 ...
..@ spot.radius : num 0.111
..@ assay : chr "Spatial"
..@ key : chr "slice1_"
可以往后面进行分析了。
小结与补充
希望Scanpy或Seurat官方能出一下相关函数吧,涉及到空间组数据时,常规的转换流程也容易报错,有很多bugs。
以下为艰辛的报错心路历程,可借鉴可忽略……
error1
网上一查,基本都是以下教程,很简单嘛,然而……
> library(Seurat)
library(SeuratDisk)
Attaching SeuratObject
> library(SeuratDisk)
Registered S3 method overwritten by 'cli':
method from
print.boxx spatstat.geom
Registered S3 method overwritten by 'SeuratDisk':
method from
as.sparse.H5Group Seurat
> Convert("cell_adata.h5ad",'h5SeuratWarning: Unknown file type: h5ad
Error in H5File.open(filename, mode, file_create_pl, file_access_pl) :
HDF5-API Errors:
error #000: H5F.c in H5Fopen(): line 793: unable to open file
class: HDF5
major: File accessibility
minor: Unable to open file
error #001: H5VLcallback.c in H5VL_file_open(): line 3500: open failed
class: HDF5
major: Virtual Object Layer
minor: Can't open object
error #002: H5VLcallback.c in H5VL__file_open(): line 3465: open failed
class: HDF5
major: Virtual Object Layer
minor: Can't open object
error #003: H5VLnative_file.c in H5VL__native_file_open(): line 100: unable to open file
class: HDF5
major: File accessibility
minor: Unable to open file
error #004: H5Fint.c in H5F_open(): line 1622: unable to lock the file
class: HDF5
major: File accessibility
minor: Unable to open file
error #005: H5FD.c in H5FD_lock(): line 1675: driver lock request failed
class: HDF5
major: Virtual File Layer
error2
修复上面的bug后(export HDF5_USE_FILE_LOCKING=FALSE),还是报错
> Convert("cell_adata.h5ad",'h5SeuraWarning: Unknown file type: h5ad
Creating h5Seurat file for version 3.1.5.9900
Adding X as data
Adding X as counts
Adding meta.features from var
Adding bbox as cell embeddings for bbox
Adding contour as cell embeddings for contour
Error: Not a matrix dataset
error3
根据某个教程,可以直接在Rstudio里使用Python,加载半天后直接报错,可能是因为我用的是集群……
> library(reticulate)
> scanpy <- import("scanpy")
*** Error in `/share/app/R/4.0.2/lib64/R/bin/exec/R': free(): invalid pointer: 0x000000000aa5f3b8 ***
======= Backtrace: =========
/usr/lib64/libc.so.6(+0x81329)[0x7fb79efc4329]
error4
尝试在Python导出矩阵后再用R读入,R直接崩溃退出……
> fmat <- npyLoad("fmat.npy")
> fmat <- npyLoad("fmat.npy")
*** caught segfault ***
address 0x7f3bf5770000, cause 'invalid permissions'
Traceback:
1: .External(list(name = "InternalFunction_invoke", address = , dll = list(name = "Rcpp", path = "/jdfssz1/software/R4.0/lib/Rcpp/libs/Rcpp.so", dynamicLookup = TRUE, handle = , info = ), numParameters = -1L), , filename, type, dotranspose)
2: npyLoad("/jdfssz3/fmat.npy")
Possible actions:
1: abort (with core dump, if enabled)
2: normal R exit
3: exit R without saving workspace
4: exit R saving workspace
Selection: 3
rm: cannot remove ‘/hwfssz5/tmp/RtmpRSe1IF’: Directory not empty
erro n++ ……
共有 0 条评论