大数据之Hadoop

Hadoop

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统( Distributed File System),其中一个组件是HDFS(Hadoop Distributed File System)。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFSMapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。

Hadoop 2.x MapReduce中剥离出了资源分配的Yarn。

HDFS

分布式文件系统(Hadoop Distributed File System)

随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。

MapReduce

分布式计算系统编程模型

MapReduce最早是由Google公司研究提出的一种面向大规模数据处理的并行计算模型和方法。Google公司设计MapReduce的初衷主要是为了解决其搜索引擎中大规模网页数据的并行化处理。Google公司发明了MapReduce之后首先用其重新改写了其搜索引擎中的Web文档索引处理系统。但由于MapReduce可以普遍应用于很多大规模数据的计算问题,因此自发明MapReduce以后,Google公司内部进一步将其广泛应用于很多大规模数据处理问题。Google公司内有上万个各种不同的算法问题和程序都使用MapReduce进行处理。

YARN

另一种资源协调者(Yet Another Resource Negotiator)

是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

Hbase

面向列的分布式数据库

HBase是一个分布式的、面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

Spark

轻量级计算引擎

Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法

Hadoop部署问题

部署配置

  1. 部署规划
hadoop102 /hdp02 hadoop103/hdp03 hadoop104/hdp04
HDFS NameNode DataNode DataNode SecondaryNameNode DataNode
YARN NodeManager JobHistoryServer ResourceManager NodeManager NodeManager
  1. 常用端口
端口名称 Hadoop2.x Hadoop3.x
NameNode内部通信端口 8020 / 9000 8020 / 9000/9820
NameNode HTTP UI 50070 9870
MapReduce查看执行任务端口 8088 8088
历史服务器通信端口 19888 19888

版权声明:
作者:感冒的梵高
链接:https://www.techfm.club/p/47481.html
来源:TechFM
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>