机器学习之回归模型-调用sklearn库求解线性回归
机器学习之回归模型-调用sklearn库求解线性回归
在使用sklearn库之前,我们先看一下这个库的结构,该库经常用于监督学习和无监督学习,sklearn共分为6大部分,分别用于完成分类任务,回归任务,聚类任务,降维任务,模型选择以及数据的预处理。由图中,可以看到库的算法主要有四类:分类,回归,聚类,降维。其中: 常用的回归:线性、决策树、SVM、KNN ;集成回归:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees 常用的分类:线性、决策树、SVM、KNN,朴素贝叶斯;集成分类:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees 常用聚类:k均值(K-means)、层次聚类(Hierarchical clustering)、DBSCAN 常用降维:LinearDiscriminantAnalysis、PCA
共有 0 条评论